Sm掺杂对EuB6的影响

IF 0.3 Q4 PHYSICS, MULTIDISCIPLINARY
C. Bozada
{"title":"Sm掺杂对EuB6的影响","authors":"C. Bozada","doi":"10.31489/2023ph3/86-90","DOIUrl":null,"url":null,"abstract":"A solid-state reaction was used to investigate the nanocrystalline particles of Sm-doped EuB6 and their optical, thermionic emission and mechanical properties were investigated. The tapered nanoawls had a length of 3–12 μm and a diameter ranging from 40 to 200 nm at the roots and 20–100 nm at the tip as shown by in scanning electron microscopy (SEM). As the temperature of the material increases, the thermionic emission current density also increases. Jo as the zero-field current densities for Eu0.6Sm0.4B6 at 1500 K, 1673 K, 1773 K, 1873 K were 0.72 A cm-2 , 4.25 A cm-2 , 10.06 A cm-2 and 20.05 A cm-2 . By increasing the Sm doping content, electrical density of Eu1-xSmxB6 decreases. In all materials, the electrical resistivities increased linearly with temperature from 200 to 1200 °C, indicating metallic conductivity. Eu0.6Sm0.4B6 has a lower Vickers hardness and higher flexural strength than EuB6.","PeriodicalId":29904,"journal":{"name":"Bulletin of the University of Karaganda-Physics","volume":"41 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Sm doping on EuB6\",\"authors\":\"C. Bozada\",\"doi\":\"10.31489/2023ph3/86-90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A solid-state reaction was used to investigate the nanocrystalline particles of Sm-doped EuB6 and their optical, thermionic emission and mechanical properties were investigated. The tapered nanoawls had a length of 3–12 μm and a diameter ranging from 40 to 200 nm at the roots and 20–100 nm at the tip as shown by in scanning electron microscopy (SEM). As the temperature of the material increases, the thermionic emission current density also increases. Jo as the zero-field current densities for Eu0.6Sm0.4B6 at 1500 K, 1673 K, 1773 K, 1873 K were 0.72 A cm-2 , 4.25 A cm-2 , 10.06 A cm-2 and 20.05 A cm-2 . By increasing the Sm doping content, electrical density of Eu1-xSmxB6 decreases. In all materials, the electrical resistivities increased linearly with temperature from 200 to 1200 °C, indicating metallic conductivity. Eu0.6Sm0.4B6 has a lower Vickers hardness and higher flexural strength than EuB6.\",\"PeriodicalId\":29904,\"journal\":{\"name\":\"Bulletin of the University of Karaganda-Physics\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the University of Karaganda-Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2023ph3/86-90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the University of Karaganda-Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023ph3/86-90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用固相反应法制备了掺杂sm的EuB6纳米晶,并对其光学、热离子发射和力学性能进行了研究。扫描电镜显示,纳米锥的长度为3 ~ 12 μm,根部直径为40 ~ 200 nm,尖端直径为20 ~ 100 nm。随着材料温度的升高,热离子发射电流密度也随之增大。Eu0.6Sm0.4B6在1500 K、1673 K、1773 K、1873 K时的零场电流密度分别为0.72、4.25、10.06和20.05 A cm-2。随着Sm掺杂量的增加,Eu1-xSmxB6的电密度降低。在所有材料中,电阻率随温度从200°C到1200°C线性增加,表明金属导电性。与EuB6相比,Eu0.6Sm0.4B6具有较低的维氏硬度和较高的抗弯强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Sm doping on EuB6
A solid-state reaction was used to investigate the nanocrystalline particles of Sm-doped EuB6 and their optical, thermionic emission and mechanical properties were investigated. The tapered nanoawls had a length of 3–12 μm and a diameter ranging from 40 to 200 nm at the roots and 20–100 nm at the tip as shown by in scanning electron microscopy (SEM). As the temperature of the material increases, the thermionic emission current density also increases. Jo as the zero-field current densities for Eu0.6Sm0.4B6 at 1500 K, 1673 K, 1773 K, 1873 K were 0.72 A cm-2 , 4.25 A cm-2 , 10.06 A cm-2 and 20.05 A cm-2 . By increasing the Sm doping content, electrical density of Eu1-xSmxB6 decreases. In all materials, the electrical resistivities increased linearly with temperature from 200 to 1200 °C, indicating metallic conductivity. Eu0.6Sm0.4B6 has a lower Vickers hardness and higher flexural strength than EuB6.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信