拉丁美洲市场资产波动分析:garch模型、人工神经网络与支持向量回归的比较

Q3 Economics, Econometrics and Finance
Victor CHUNG, Jenny ESPINOZA
{"title":"拉丁美洲市场资产波动分析:garch模型、人工神经网络与支持向量回归的比较","authors":"Victor CHUNG, Jenny ESPINOZA","doi":"10.35784/acs-2023-21","DOIUrl":null,"url":null,"abstract":"The objective of this research was to compare the effectiveness of the GARCH method with machine learning techniques in predicting asset volatility in the main Latin American markets. The daily squared return was utilized as a volatility indicator, and the accuracy of the predictions was assessed using root mean square error (RMSE) and mean absolute error (MAE) metrics. The findings consistently demonstrated that the linear SVR-GARCH models outperformed other approaches, exhibiting the lowest MAE and MSE values across various assets in the test sample. Specifically, the SVRGARCH RBF model achieved the most accurate results for the IPC asset. It was observed that GARCH models tended to produce higher volatility forecasts during periods of heightened volatility due to their responsiveness to significant past changes. Consequently, this led to larger squared prediction errors for GARCH models compared to SVR models. This suggests that incorporating machine learning techniques can provide improved volatility forecasting capabilities compared to the traditional GARCH models.","PeriodicalId":36379,"journal":{"name":"Applied Computer Science","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A LATIN AMERICAN MARKET ASSET VOLATILITY ANALYSIS: A COMPARISON OF GARCH MODEL, ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR REGRESSION\",\"authors\":\"Victor CHUNG, Jenny ESPINOZA\",\"doi\":\"10.35784/acs-2023-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this research was to compare the effectiveness of the GARCH method with machine learning techniques in predicting asset volatility in the main Latin American markets. The daily squared return was utilized as a volatility indicator, and the accuracy of the predictions was assessed using root mean square error (RMSE) and mean absolute error (MAE) metrics. The findings consistently demonstrated that the linear SVR-GARCH models outperformed other approaches, exhibiting the lowest MAE and MSE values across various assets in the test sample. Specifically, the SVRGARCH RBF model achieved the most accurate results for the IPC asset. It was observed that GARCH models tended to produce higher volatility forecasts during periods of heightened volatility due to their responsiveness to significant past changes. Consequently, this led to larger squared prediction errors for GARCH models compared to SVR models. This suggests that incorporating machine learning techniques can provide improved volatility forecasting capabilities compared to the traditional GARCH models.\",\"PeriodicalId\":36379,\"journal\":{\"name\":\"Applied Computer Science\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35784/acs-2023-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/acs-2023-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是比较GARCH方法与机器学习技术在预测拉丁美洲主要市场资产波动方面的有效性。使用日平方收益作为波动性指标,并使用均方根误差(RMSE)和平均绝对误差(MAE)指标评估预测的准确性。研究结果一致表明,线性SVR-GARCH模型优于其他方法,在测试样本中显示出各种资产的最低MAE和MSE值。具体来说,SVRGARCH RBF模型对IPC资产获得了最准确的结果。研究发现,由于GARCH模型对过去重大变化的响应性,在波动加剧的时期,GARCH模型往往产生更高的波动率预测。因此,与SVR模型相比,GARCH模型的平方预测误差更大。这表明,与传统GARCH模型相比,结合机器学习技术可以提供更好的波动率预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A LATIN AMERICAN MARKET ASSET VOLATILITY ANALYSIS: A COMPARISON OF GARCH MODEL, ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR REGRESSION
The objective of this research was to compare the effectiveness of the GARCH method with machine learning techniques in predicting asset volatility in the main Latin American markets. The daily squared return was utilized as a volatility indicator, and the accuracy of the predictions was assessed using root mean square error (RMSE) and mean absolute error (MAE) metrics. The findings consistently demonstrated that the linear SVR-GARCH models outperformed other approaches, exhibiting the lowest MAE and MSE values across various assets in the test sample. Specifically, the SVRGARCH RBF model achieved the most accurate results for the IPC asset. It was observed that GARCH models tended to produce higher volatility forecasts during periods of heightened volatility due to their responsiveness to significant past changes. Consequently, this led to larger squared prediction errors for GARCH models compared to SVR models. This suggests that incorporating machine learning techniques can provide improved volatility forecasting capabilities compared to the traditional GARCH models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computer Science
Applied Computer Science Engineering-Industrial and Manufacturing Engineering
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信