{"title":"爆炸性气泡的测试:综述","authors":"Anton Skrobotov","doi":"10.1515/demo-2022-0152","DOIUrl":null,"url":null,"abstract":"Abstract This review discusses methods of testing for explosive bubbles in time series. A large number of recently developed testing methods under various assumptions about innovation of errors are covered. The review also considers the methods for dating explosive (bubble) regimes. Special attention is devoted to time-varying volatility in the errors. Moreover, the modelling of possible relationships between time series with explosive regimes is discussed.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"90 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Testing for explosive bubbles: a review\",\"authors\":\"Anton Skrobotov\",\"doi\":\"10.1515/demo-2022-0152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This review discusses methods of testing for explosive bubbles in time series. A large number of recently developed testing methods under various assumptions about innovation of errors are covered. The review also considers the methods for dating explosive (bubble) regimes. Special attention is devoted to time-varying volatility in the errors. Moreover, the modelling of possible relationships between time series with explosive regimes is discussed.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2022-0152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2022-0152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Abstract This review discusses methods of testing for explosive bubbles in time series. A large number of recently developed testing methods under various assumptions about innovation of errors are covered. The review also considers the methods for dating explosive (bubble) regimes. Special attention is devoted to time-varying volatility in the errors. Moreover, the modelling of possible relationships between time series with explosive regimes is discussed.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations