{"title":"基于神经网络的Hurst指数估计","authors":"Somenath Mukherjee, Bikash Sadhukhan, Arghya Kusum Das, Abhra Chaudhuri","doi":"10.1504/ijcse.2023.129734","DOIUrl":null,"url":null,"abstract":"The Hurst exponent is used to identify the autocorrelation structure of a stochastic time series, which allows for detecting persistence in time series data. Traditional signal processing techniques work reasonably well in determining the Hurst exponent of a stochastic time series. However, a notable drawback of these methods is their speed of computation. Neural networks have repeatedly proven their ability to learn very complex input-output mappings, even in high dimensional vector spaces. Therefore, an endeavour has been undertaken to employ neural networks to determine the Hurst exponent of a stochastic time series. Unlike previous attempts to solve such problems using neural networks, the proposed architecture can be recognised as the universal estimator of Hurst exponent for short-range and long-range dependent stochastic time series. Experiments demonstrate that if sufficiently trained, neural network can predict the Hurst exponent of any stochastic data at least fifteen times faster than standard signal processing approaches.","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hurst exponent estimation using neural network\",\"authors\":\"Somenath Mukherjee, Bikash Sadhukhan, Arghya Kusum Das, Abhra Chaudhuri\",\"doi\":\"10.1504/ijcse.2023.129734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hurst exponent is used to identify the autocorrelation structure of a stochastic time series, which allows for detecting persistence in time series data. Traditional signal processing techniques work reasonably well in determining the Hurst exponent of a stochastic time series. However, a notable drawback of these methods is their speed of computation. Neural networks have repeatedly proven their ability to learn very complex input-output mappings, even in high dimensional vector spaces. Therefore, an endeavour has been undertaken to employ neural networks to determine the Hurst exponent of a stochastic time series. Unlike previous attempts to solve such problems using neural networks, the proposed architecture can be recognised as the universal estimator of Hurst exponent for short-range and long-range dependent stochastic time series. Experiments demonstrate that if sufficiently trained, neural network can predict the Hurst exponent of any stochastic data at least fifteen times faster than standard signal processing approaches.\",\"PeriodicalId\":47380,\"journal\":{\"name\":\"International Journal of Computational Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcse.2023.129734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2023.129734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The Hurst exponent is used to identify the autocorrelation structure of a stochastic time series, which allows for detecting persistence in time series data. Traditional signal processing techniques work reasonably well in determining the Hurst exponent of a stochastic time series. However, a notable drawback of these methods is their speed of computation. Neural networks have repeatedly proven their ability to learn very complex input-output mappings, even in high dimensional vector spaces. Therefore, an endeavour has been undertaken to employ neural networks to determine the Hurst exponent of a stochastic time series. Unlike previous attempts to solve such problems using neural networks, the proposed architecture can be recognised as the universal estimator of Hurst exponent for short-range and long-range dependent stochastic time series. Experiments demonstrate that if sufficiently trained, neural network can predict the Hurst exponent of any stochastic data at least fifteen times faster than standard signal processing approaches.
期刊介绍:
Computational science and engineering is an emerging and promising discipline in shaping future research and development activities in both academia and industry, in fields ranging from engineering, science, finance, and economics, to arts and humanities. New challenges arise in the modelling of complex systems, sophisticated algorithms, advanced scientific and engineering computing and associated (multidisciplinary) problem-solving environments. Because the solution of large and complex problems must cope with tight timing schedules, powerful algorithms and computational techniques, are inevitable. IJCSE addresses the state of the art of all aspects of computational science and engineering with emphasis on computational methods and techniques for science and engineering applications.