BEA:一种用于潜水员援助的多无人驾驶车辆系统概述

L. Barilaro
{"title":"BEA:一种用于潜水员援助的多无人驾驶车辆系统概述","authors":"L. Barilaro","doi":"10.21741/9781644902813-53","DOIUrl":null,"url":null,"abstract":"Abstract. This paper presents an overview of a solution to address the issue of marine traffic endangering scuba diving and free diving. Diving is a popular recreational activity, and it is estimated that there are around six million active scuba divers worldwide. When diving, it is essential to signal one's presence with universal markers, however, boat drivers do not always recognize them and can speed too close to dive zones, posing a risk to divers. To mitigate these risks, a multi-unmanned vehicle system consisting of an Unmanned Aerial Vehicle (UAV), an Unmanned Surface Vehicle (USV), and an Unmanned Underwater Vehicle (UUV) has been developed. The proposed system works in synergy to monitor and protect divers. The UAV monitors the surface of the sea near the dive zone for any traffic, while the USV tracks the UUV, communicates with the other unmanned vehicles, and provides a takeoff/landing surface for the UAV. The USV can also be used to tow divers and equipment to/from the shore. Finally, the UUV tracks the diver and warns them if it is unsafe to surface. The paper provides an overview of the design and system's architecture, algorithms for boat detection, precision landing and UUV tracking, as well as preliminary tests carried out on the prototype. The proposed system is found to be suitable for the intended application. The BEA (Buoy Eau Air) system is the first in the world to use a multi-drone system to create a geo-fence around the diver and monitor the area within it. The paper also highlights the potential benefits of such a system for the touristic sector, especially for countries where diving is a popular recreational activity.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BEA: Overview of a multi-unmanned vehicle system for diver assistance\",\"authors\":\"L. Barilaro\",\"doi\":\"10.21741/9781644902813-53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. This paper presents an overview of a solution to address the issue of marine traffic endangering scuba diving and free diving. Diving is a popular recreational activity, and it is estimated that there are around six million active scuba divers worldwide. When diving, it is essential to signal one's presence with universal markers, however, boat drivers do not always recognize them and can speed too close to dive zones, posing a risk to divers. To mitigate these risks, a multi-unmanned vehicle system consisting of an Unmanned Aerial Vehicle (UAV), an Unmanned Surface Vehicle (USV), and an Unmanned Underwater Vehicle (UUV) has been developed. The proposed system works in synergy to monitor and protect divers. The UAV monitors the surface of the sea near the dive zone for any traffic, while the USV tracks the UUV, communicates with the other unmanned vehicles, and provides a takeoff/landing surface for the UAV. The USV can also be used to tow divers and equipment to/from the shore. Finally, the UUV tracks the diver and warns them if it is unsafe to surface. The paper provides an overview of the design and system's architecture, algorithms for boat detection, precision landing and UUV tracking, as well as preliminary tests carried out on the prototype. The proposed system is found to be suitable for the intended application. The BEA (Buoy Eau Air) system is the first in the world to use a multi-drone system to create a geo-fence around the diver and monitor the area within it. The paper also highlights the potential benefits of such a system for the touristic sector, especially for countries where diving is a popular recreational activity.\",\"PeriodicalId\":87445,\"journal\":{\"name\":\"Materials Research Society symposia proceedings. Materials Research Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Society symposia proceedings. Materials Research Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21741/9781644902813-53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Society symposia proceedings. Materials Research Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644902813-53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文概述了解决危及水肺潜水和自由潜水的海上交通问题的解决方案。潜水是一项受欢迎的娱乐活动,据估计,全世界大约有600万活跃的水肺潜水员。潜水时,必须用通用标记来表明自己的存在,然而,船只司机并不总能识别它们,并且可能在离潜水区太近的地方加速,对潜水员构成危险。为了减轻这些风险,一种由无人机(UAV)、无人水面航行器(USV)和无人水下航行器(UUV)组成的多无人机系统已经被开发出来。拟议的系统协同工作,以监测和保护潜水员。UAV监视潜水区附近海面的任何交通,而USV跟踪UUV,与其他无人驾驶车辆通信,并且为UAV提供起飞/着陆水面。USV也可以用来拖拽潜水员和设备到/离海岸。最后,无人潜航器会跟踪潜水员,并在水面不安全时发出警告。本文概述了该系统的设计和体系结构、船舶探测、精确着陆和UUV跟踪的算法,以及在原型机上进行的初步测试。所建议的系统被认为适合预期的应用。BEA (Buoy Eau Air)系统是世界上第一个使用多无人机系统在潜水员周围创建地理围栏并监控其内部区域的系统。该报告还强调了这种系统对旅游业的潜在好处,特别是对潜水是一项流行娱乐活动的国家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BEA: Overview of a multi-unmanned vehicle system for diver assistance
Abstract. This paper presents an overview of a solution to address the issue of marine traffic endangering scuba diving and free diving. Diving is a popular recreational activity, and it is estimated that there are around six million active scuba divers worldwide. When diving, it is essential to signal one's presence with universal markers, however, boat drivers do not always recognize them and can speed too close to dive zones, posing a risk to divers. To mitigate these risks, a multi-unmanned vehicle system consisting of an Unmanned Aerial Vehicle (UAV), an Unmanned Surface Vehicle (USV), and an Unmanned Underwater Vehicle (UUV) has been developed. The proposed system works in synergy to monitor and protect divers. The UAV monitors the surface of the sea near the dive zone for any traffic, while the USV tracks the UUV, communicates with the other unmanned vehicles, and provides a takeoff/landing surface for the UAV. The USV can also be used to tow divers and equipment to/from the shore. Finally, the UUV tracks the diver and warns them if it is unsafe to surface. The paper provides an overview of the design and system's architecture, algorithms for boat detection, precision landing and UUV tracking, as well as preliminary tests carried out on the prototype. The proposed system is found to be suitable for the intended application. The BEA (Buoy Eau Air) system is the first in the world to use a multi-drone system to create a geo-fence around the diver and monitor the area within it. The paper also highlights the potential benefits of such a system for the touristic sector, especially for countries where diving is a popular recreational activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信