{"title":"baf2o4 /MWCNTs/环氧纳米复合材料的铁电、介电和电磁干扰衰减特性","authors":"Shivali Meena, Neelam Kumari, Vishant Gahlaut, Chander Shekhar, Supratim Mitra, Umesh Kumar Dwivedi","doi":"10.1080/09276440.2023.2273094","DOIUrl":null,"url":null,"abstract":"ABSTRACTThis study reports the synthesis of barium-ferrite (BaFe2O4) particles by co-precipitation method, which is employed to prepare BaFe2O4/multiwall carbon nanotubes (MWCNTs)/epoxy nanocomposites. Furthermore, the structural properties, ferroelectric and dielectric properties, and electromagnetic attenuation properties are studied. The role of varying concentrations of BaFe2O4, frequency, and temperature on dielectric behavior is studied. In the presence of applied field, dielectric constant enhances as a result of interfacial polarization with increasing BaFe2O4 concentration. The permittivity is highest at low frequency and decreased with increasing frequency. With temperature, initially, dielectric constant increases and then decreases as a result of charge accumulation at interfaces and leads to interfacial polarization as confirmed by ferroelectric behavior. Here, BaFe2O4/MWCNTs/epoxy composite (with 40 phr BFO, where phr denotes parts per hundred) exhibited the highest value of saturation polarization (PS) ~0.31 µC/cm2 and low value of remanent polarization (Pr), that is ~0.009 µC/cm2. Moreover, composites exhibited high electromagnetic interference (EMI) shielding effectiveness (SE) of nearly 19 dB for 40 phr BaFe2O4 concentration at 11.3 GHz. Here, the reflection-dominated SE is ~1.06 dB and absorption-dominated SE is about 18.67 dB, which dominates the total SE. The absorption-dominant behavior is depicted by the BaFe2O4/MWCNTs/epoxy nanocomposites in EMI shielding as further conferred in the text.KEYWORDS: Polymer compositeferriteinterfacedielectricEMI shielding Highlights BaFe2O4/multiwall carbon nanotubes (MWCNTs)/epoxy nanocomposites are prepared.The prepared nanocomposites are ferroelectric.Temperature increases dielectric properties of the nanocomposites.Nanocomposite with 40 phr BaFe2O4 shows nearly 19 dB electromagnetic interference (EMI) shielding.BaFe2O4/MWCNTs/epoxy nanocomposites show more absorption-dominated EMI shielding compared to reflection.AcknowledgementsWe greatly acknowledge the Council of Scientific and Industrial Research (CSIR), India, for supporting the Research Fellowship CSIR-SRF (File no. – 09/1244(0003)/2019-EMR-1) and DST-PURSE Grant to Amity University Rajasthan, Jaipur for providing necessary facilities.Disclosure statementNo potential conflict of interest was reported by the authors.Author contributionsConceptualization, methodology, material preparation, data collection, investigation, formal analysis, writing – original draft, visualization: Shivali Meena; Data collection, investigation, formal analysis, writing – visualization, review and editing: Neelam Kumari; Characterization – Vector Network Analyzer : Vishant Gahlaut; Characterization – P-E loop : Chander Shekhar; Characterization – X-ray diffractometer, scanning electron microscopy, supervision: Supratim Mitra; Validation, resources, visualization, supervision, writing – review and editing : Umesh Kumar Dwivedi.Data availability statementThe data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.Statement of patient consentThe author’s consent to participate in this study article.Additional informationFundingCouncil of Scientific and Industrial Research (CSIR), India, Grant 09/1244(0003)/2019-EMR-1.","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelectric, dielectric, and EMI attenuation characteristics of BaFe <sub>2</sub> O <sub>4</sub> /MWCNTs/epoxy nanocomposites\",\"authors\":\"Shivali Meena, Neelam Kumari, Vishant Gahlaut, Chander Shekhar, Supratim Mitra, Umesh Kumar Dwivedi\",\"doi\":\"10.1080/09276440.2023.2273094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThis study reports the synthesis of barium-ferrite (BaFe2O4) particles by co-precipitation method, which is employed to prepare BaFe2O4/multiwall carbon nanotubes (MWCNTs)/epoxy nanocomposites. Furthermore, the structural properties, ferroelectric and dielectric properties, and electromagnetic attenuation properties are studied. The role of varying concentrations of BaFe2O4, frequency, and temperature on dielectric behavior is studied. In the presence of applied field, dielectric constant enhances as a result of interfacial polarization with increasing BaFe2O4 concentration. The permittivity is highest at low frequency and decreased with increasing frequency. With temperature, initially, dielectric constant increases and then decreases as a result of charge accumulation at interfaces and leads to interfacial polarization as confirmed by ferroelectric behavior. Here, BaFe2O4/MWCNTs/epoxy composite (with 40 phr BFO, where phr denotes parts per hundred) exhibited the highest value of saturation polarization (PS) ~0.31 µC/cm2 and low value of remanent polarization (Pr), that is ~0.009 µC/cm2. Moreover, composites exhibited high electromagnetic interference (EMI) shielding effectiveness (SE) of nearly 19 dB for 40 phr BaFe2O4 concentration at 11.3 GHz. Here, the reflection-dominated SE is ~1.06 dB and absorption-dominated SE is about 18.67 dB, which dominates the total SE. The absorption-dominant behavior is depicted by the BaFe2O4/MWCNTs/epoxy nanocomposites in EMI shielding as further conferred in the text.KEYWORDS: Polymer compositeferriteinterfacedielectricEMI shielding Highlights BaFe2O4/multiwall carbon nanotubes (MWCNTs)/epoxy nanocomposites are prepared.The prepared nanocomposites are ferroelectric.Temperature increases dielectric properties of the nanocomposites.Nanocomposite with 40 phr BaFe2O4 shows nearly 19 dB electromagnetic interference (EMI) shielding.BaFe2O4/MWCNTs/epoxy nanocomposites show more absorption-dominated EMI shielding compared to reflection.AcknowledgementsWe greatly acknowledge the Council of Scientific and Industrial Research (CSIR), India, for supporting the Research Fellowship CSIR-SRF (File no. – 09/1244(0003)/2019-EMR-1) and DST-PURSE Grant to Amity University Rajasthan, Jaipur for providing necessary facilities.Disclosure statementNo potential conflict of interest was reported by the authors.Author contributionsConceptualization, methodology, material preparation, data collection, investigation, formal analysis, writing – original draft, visualization: Shivali Meena; Data collection, investigation, formal analysis, writing – visualization, review and editing: Neelam Kumari; Characterization – Vector Network Analyzer : Vishant Gahlaut; Characterization – P-E loop : Chander Shekhar; Characterization – X-ray diffractometer, scanning electron microscopy, supervision: Supratim Mitra; Validation, resources, visualization, supervision, writing – review and editing : Umesh Kumar Dwivedi.Data availability statementThe data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.Statement of patient consentThe author’s consent to participate in this study article.Additional informationFundingCouncil of Scientific and Industrial Research (CSIR), India, Grant 09/1244(0003)/2019-EMR-1.\",\"PeriodicalId\":10653,\"journal\":{\"name\":\"Composite Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09276440.2023.2273094\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2273094","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Ferroelectric, dielectric, and EMI attenuation characteristics of BaFe 2 O 4 /MWCNTs/epoxy nanocomposites
ABSTRACTThis study reports the synthesis of barium-ferrite (BaFe2O4) particles by co-precipitation method, which is employed to prepare BaFe2O4/multiwall carbon nanotubes (MWCNTs)/epoxy nanocomposites. Furthermore, the structural properties, ferroelectric and dielectric properties, and electromagnetic attenuation properties are studied. The role of varying concentrations of BaFe2O4, frequency, and temperature on dielectric behavior is studied. In the presence of applied field, dielectric constant enhances as a result of interfacial polarization with increasing BaFe2O4 concentration. The permittivity is highest at low frequency and decreased with increasing frequency. With temperature, initially, dielectric constant increases and then decreases as a result of charge accumulation at interfaces and leads to interfacial polarization as confirmed by ferroelectric behavior. Here, BaFe2O4/MWCNTs/epoxy composite (with 40 phr BFO, where phr denotes parts per hundred) exhibited the highest value of saturation polarization (PS) ~0.31 µC/cm2 and low value of remanent polarization (Pr), that is ~0.009 µC/cm2. Moreover, composites exhibited high electromagnetic interference (EMI) shielding effectiveness (SE) of nearly 19 dB for 40 phr BaFe2O4 concentration at 11.3 GHz. Here, the reflection-dominated SE is ~1.06 dB and absorption-dominated SE is about 18.67 dB, which dominates the total SE. The absorption-dominant behavior is depicted by the BaFe2O4/MWCNTs/epoxy nanocomposites in EMI shielding as further conferred in the text.KEYWORDS: Polymer compositeferriteinterfacedielectricEMI shielding Highlights BaFe2O4/multiwall carbon nanotubes (MWCNTs)/epoxy nanocomposites are prepared.The prepared nanocomposites are ferroelectric.Temperature increases dielectric properties of the nanocomposites.Nanocomposite with 40 phr BaFe2O4 shows nearly 19 dB electromagnetic interference (EMI) shielding.BaFe2O4/MWCNTs/epoxy nanocomposites show more absorption-dominated EMI shielding compared to reflection.AcknowledgementsWe greatly acknowledge the Council of Scientific and Industrial Research (CSIR), India, for supporting the Research Fellowship CSIR-SRF (File no. – 09/1244(0003)/2019-EMR-1) and DST-PURSE Grant to Amity University Rajasthan, Jaipur for providing necessary facilities.Disclosure statementNo potential conflict of interest was reported by the authors.Author contributionsConceptualization, methodology, material preparation, data collection, investigation, formal analysis, writing – original draft, visualization: Shivali Meena; Data collection, investigation, formal analysis, writing – visualization, review and editing: Neelam Kumari; Characterization – Vector Network Analyzer : Vishant Gahlaut; Characterization – P-E loop : Chander Shekhar; Characterization – X-ray diffractometer, scanning electron microscopy, supervision: Supratim Mitra; Validation, resources, visualization, supervision, writing – review and editing : Umesh Kumar Dwivedi.Data availability statementThe data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.Statement of patient consentThe author’s consent to participate in this study article.Additional informationFundingCouncil of Scientific and Industrial Research (CSIR), India, Grant 09/1244(0003)/2019-EMR-1.
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields