第三阶painlevleve方程Umemura多项式的构造证明

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Peter A. Clarkson, Chun-Kong Law, Chia-Hua Lin
{"title":"第三阶painlevleve方程Umemura多项式的构造证明","authors":"Peter A. Clarkson, Chun-Kong Law, Chia-Hua Lin","doi":"10.3842/sigma.2023.080","DOIUrl":null,"url":null,"abstract":"We are concerned with the Umemura polynomials associated with rational solutions of the third Painlevé equation. We extend Taneda's method, which was developed for the Yablonskii-Vorob'ev polynomials associated with the second Painlevé equation, to give an algebraic proof that the rational functions generated by the nonlinear recurrence relation which determines the Umemura polynomials are indeed polynomials. Our proof is constructive and gives information about the roots of the Umemura polynomials.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"7 4","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Constructive Proof for the Umemura Polynomials of the Third Painlevé Equation\",\"authors\":\"Peter A. Clarkson, Chun-Kong Law, Chia-Hua Lin\",\"doi\":\"10.3842/sigma.2023.080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are concerned with the Umemura polynomials associated with rational solutions of the third Painlevé equation. We extend Taneda's method, which was developed for the Yablonskii-Vorob'ev polynomials associated with the second Painlevé equation, to give an algebraic proof that the rational functions generated by the nonlinear recurrence relation which determines the Umemura polynomials are indeed polynomials. Our proof is constructive and gives information about the roots of the Umemura polynomials.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":\"7 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/sigma.2023.080\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.080","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们关注与第三阶painlevleve方程的有理解相关的Umemura多项式。我们推广了Taneda的Yablonskii-Vorob'ev多项式与第二painlev方程相关联的方法,给出了由非线性递归关系生成的有理函数确实是多项式的代数证明。我们的证明是建设性的,并且给出了关于Umemura多项式的根的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Constructive Proof for the Umemura Polynomials of the Third Painlevé Equation
We are concerned with the Umemura polynomials associated with rational solutions of the third Painlevé equation. We extend Taneda's method, which was developed for the Yablonskii-Vorob'ev polynomials associated with the second Painlevé equation, to give an algebraic proof that the rational functions generated by the nonlinear recurrence relation which determines the Umemura polynomials are indeed polynomials. Our proof is constructive and gives information about the roots of the Umemura polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信