{"title":"氮半导体量子阱中一维氢杂质的热力学性质","authors":"Xue Liu, De-hua Wang, Xin-yu Xie, Bin-hua Chu, Shu-fang Zhang, Gang Zhao","doi":"10.1080/14786435.2023.2270436","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe thermodynamic properties of one-dimensional (1-D) hydrogenic impurity in Nitride semiconductor quantum well have been investigated. Firstly, using a combination of the linear variational approach and the effective mass approximation, we obtain the eigen-energy of hydrogenic impurity states in AlN, GaN and InN quantum wells. Subsequently, we explore the quantum size effect on the thermodynamic properties of these low-dimensional semiconductor structures, revealing some novel and intriguing phenomena. It is found as the width of the quantum well is increased, the energy of hydrogenic impurity gets decreased, however, the thermodynamic parameters, such as the average energy, entropy and heat capacity of the hydrogenic impurity become increased. The physical origins of these peculiar phenomena are attributed to the competitive mechanism between the quantum confinement effect and Coulombic interaction between the electron and impurity. Finally, by conducting a comprehensive comparison of the thermodynamic parameters among GaN, InN, and AlN quantum wells, we propose an innovative strategy for modulating the thermodynamic properties of these low-dimensional semiconductor structures. This manipulation can be achieved not only through external factors such as temperature and quantum well size, but also by altering internal variables like the effective mass and relative dielectric constant of the semiconductor material. This study not only advances our understanding of the thermodynamic properties of hydrogenic impurities in semiconductor quantum wells, but also provides some theoretical guidance for practical applications in fields such as semiconductor physics, condensed matter physics, chemical physics, etc.KEYWORDS: Thermodynamic propertyhydrogenic impuritysemiconductor quantum welllow-dimensional structure AcknowledgementWe also thank the referees for their valuable suggestions.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the Natural Science Foundation of Shandong Province, China (Grant Nos.ZR2019MA066 and ZR2020MF103), the Taishan Scholar Project of Shandong Province (grant number tsqn201812098), and the National Natural Science Foundation of China (Grant Nos. 11874191 and 62275115).","PeriodicalId":19856,"journal":{"name":"Philosophical Magazine","volume":"65 2","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic property of one-dimensional hydrogenic impurity in Nitride semiconductor quantum well\",\"authors\":\"Xue Liu, De-hua Wang, Xin-yu Xie, Bin-hua Chu, Shu-fang Zhang, Gang Zhao\",\"doi\":\"10.1080/14786435.2023.2270436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThe thermodynamic properties of one-dimensional (1-D) hydrogenic impurity in Nitride semiconductor quantum well have been investigated. Firstly, using a combination of the linear variational approach and the effective mass approximation, we obtain the eigen-energy of hydrogenic impurity states in AlN, GaN and InN quantum wells. Subsequently, we explore the quantum size effect on the thermodynamic properties of these low-dimensional semiconductor structures, revealing some novel and intriguing phenomena. It is found as the width of the quantum well is increased, the energy of hydrogenic impurity gets decreased, however, the thermodynamic parameters, such as the average energy, entropy and heat capacity of the hydrogenic impurity become increased. The physical origins of these peculiar phenomena are attributed to the competitive mechanism between the quantum confinement effect and Coulombic interaction between the electron and impurity. Finally, by conducting a comprehensive comparison of the thermodynamic parameters among GaN, InN, and AlN quantum wells, we propose an innovative strategy for modulating the thermodynamic properties of these low-dimensional semiconductor structures. This manipulation can be achieved not only through external factors such as temperature and quantum well size, but also by altering internal variables like the effective mass and relative dielectric constant of the semiconductor material. This study not only advances our understanding of the thermodynamic properties of hydrogenic impurities in semiconductor quantum wells, but also provides some theoretical guidance for practical applications in fields such as semiconductor physics, condensed matter physics, chemical physics, etc.KEYWORDS: Thermodynamic propertyhydrogenic impuritysemiconductor quantum welllow-dimensional structure AcknowledgementWe also thank the referees for their valuable suggestions.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the Natural Science Foundation of Shandong Province, China (Grant Nos.ZR2019MA066 and ZR2020MF103), the Taishan Scholar Project of Shandong Province (grant number tsqn201812098), and the National Natural Science Foundation of China (Grant Nos. 11874191 and 62275115).\",\"PeriodicalId\":19856,\"journal\":{\"name\":\"Philosophical Magazine\",\"volume\":\"65 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14786435.2023.2270436\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14786435.2023.2270436","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermodynamic property of one-dimensional hydrogenic impurity in Nitride semiconductor quantum well
ABSTRACTThe thermodynamic properties of one-dimensional (1-D) hydrogenic impurity in Nitride semiconductor quantum well have been investigated. Firstly, using a combination of the linear variational approach and the effective mass approximation, we obtain the eigen-energy of hydrogenic impurity states in AlN, GaN and InN quantum wells. Subsequently, we explore the quantum size effect on the thermodynamic properties of these low-dimensional semiconductor structures, revealing some novel and intriguing phenomena. It is found as the width of the quantum well is increased, the energy of hydrogenic impurity gets decreased, however, the thermodynamic parameters, such as the average energy, entropy and heat capacity of the hydrogenic impurity become increased. The physical origins of these peculiar phenomena are attributed to the competitive mechanism between the quantum confinement effect and Coulombic interaction between the electron and impurity. Finally, by conducting a comprehensive comparison of the thermodynamic parameters among GaN, InN, and AlN quantum wells, we propose an innovative strategy for modulating the thermodynamic properties of these low-dimensional semiconductor structures. This manipulation can be achieved not only through external factors such as temperature and quantum well size, but also by altering internal variables like the effective mass and relative dielectric constant of the semiconductor material. This study not only advances our understanding of the thermodynamic properties of hydrogenic impurities in semiconductor quantum wells, but also provides some theoretical guidance for practical applications in fields such as semiconductor physics, condensed matter physics, chemical physics, etc.KEYWORDS: Thermodynamic propertyhydrogenic impuritysemiconductor quantum welllow-dimensional structure AcknowledgementWe also thank the referees for their valuable suggestions.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the Natural Science Foundation of Shandong Province, China (Grant Nos.ZR2019MA066 and ZR2020MF103), the Taishan Scholar Project of Shandong Province (grant number tsqn201812098), and the National Natural Science Foundation of China (Grant Nos. 11874191 and 62275115).
期刊介绍:
The Editors of Philosophical Magazine consider for publication contributions describing original experimental and theoretical results, computational simulations and concepts relating to the structure and properties of condensed matter. The submission of papers on novel measurements, phases, phenomena, and new types of material is encouraged.