一阶同调逻辑

Pub Date : 2023-09-18 DOI:10.1017/jsl.2023.68
Joseph Helfer
{"title":"一阶同调逻辑","authors":"Joseph Helfer","doi":"10.1017/jsl.2023.68","DOIUrl":null,"url":null,"abstract":"We introduce a homotopy-theoretic interpretation of intuitionistic first-order logic based on ideas from Homotopy Type Theory. We provide a categorical formulation of this interpretation using the framework of Grothendieck fibrations. We then use this formulation to prove the central property of this interpretation, namely homotopy invariance. To do this, we use the result from arXiv:1905.10690 that any Grothendieck fibration of the kind being considered can automatically be upgraded to a 2-dimensional fibration, after which the invariance property is reduced to an abstract theorem concerning pseudonatural transformations of morphisms into 2-dimensional fibrations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"First-order homotopical logic\",\"authors\":\"Joseph Helfer\",\"doi\":\"10.1017/jsl.2023.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a homotopy-theoretic interpretation of intuitionistic first-order logic based on ideas from Homotopy Type Theory. We provide a categorical formulation of this interpretation using the framework of Grothendieck fibrations. We then use this formulation to prove the central property of this interpretation, namely homotopy invariance. To do this, we use the result from arXiv:1905.10690 that any Grothendieck fibration of the kind being considered can automatically be upgraded to a 2-dimensional fibration, after which the invariance property is reduced to an abstract theorem concerning pseudonatural transformations of morphisms into 2-dimensional fibrations.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2023.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于同伦类型论的思想,给出了直觉一阶逻辑的同伦解释。我们使用格罗滕迪克振动的框架提供了这种解释的分类公式。然后我们用这个公式证明了这个解释的中心性质,即同伦不变性。为了做到这一点,我们使用arXiv:1905.10690的结果,即所考虑的任何类型的Grothendieck纤维都可以自动升级为二维纤维,之后不变性性质被简化为关于态射到二维纤维的伪自然变换的抽象定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
First-order homotopical logic
We introduce a homotopy-theoretic interpretation of intuitionistic first-order logic based on ideas from Homotopy Type Theory. We provide a categorical formulation of this interpretation using the framework of Grothendieck fibrations. We then use this formulation to prove the central property of this interpretation, namely homotopy invariance. To do this, we use the result from arXiv:1905.10690 that any Grothendieck fibration of the kind being considered can automatically be upgraded to a 2-dimensional fibration, after which the invariance property is reduced to an abstract theorem concerning pseudonatural transformations of morphisms into 2-dimensional fibrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信