简单剪切条件下砂土液化后特性的试验研究

IF 1.3 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL
Lucia Mele, Stefania Lirer, Alessandro Flora
{"title":"简单剪切条件下砂土液化后特性的试验研究","authors":"Lucia Mele, Stefania Lirer, Alessandro Flora","doi":"10.1520/gtj20230306","DOIUrl":null,"url":null,"abstract":"Experimental evidence shows that earthquake induced liquefaction can occur more than once in sandy soils. Moreover, despite an increase in soil density caused by the dissipation of the excess pore pressure induced by earthquakes, the liquefaction resistance of soils that have experienced liquefaction may be lower than that of virgin soils. This paper offers insight into this topic starting from the analysis of the undrained monotonic behavior of post-liquefied sands by means of tests performed with a simple shear cell equipped with flexible boundaries, which maintains a constant diameter to guarantee the “K0-condition.” The control system of cyclic, reconsolidation, and monotonic phases is described in detail. The experimental results show that neither the relative density, effective confining stress, cyclic stress ratio, nor the direction of shear strain play important roles in the monotonic behavior of post-liquefied soils. Moreover, the comparison between the monotonic response of virgin and post-liquefied soils (prepared by moist tamping technique) shows that it is not affected by the stress–strain history experienced by soils. It can be explained through a microstructural interpretation. According to which, the initial soil fabric generated with the moist tamping method and that formed during liquefaction remain almost unchanged because of the rotation of principal stress directions occurring during simple shear tests. A further confirmation is given by the results of tests performed on specimens prepared by air pluviation method.","PeriodicalId":55099,"journal":{"name":"Geotechnical Testing Journal","volume":"113 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental Investigation on the Post-liquefaction Behavior of Sands in Simple Shear Conditions\",\"authors\":\"Lucia Mele, Stefania Lirer, Alessandro Flora\",\"doi\":\"10.1520/gtj20230306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimental evidence shows that earthquake induced liquefaction can occur more than once in sandy soils. Moreover, despite an increase in soil density caused by the dissipation of the excess pore pressure induced by earthquakes, the liquefaction resistance of soils that have experienced liquefaction may be lower than that of virgin soils. This paper offers insight into this topic starting from the analysis of the undrained monotonic behavior of post-liquefied sands by means of tests performed with a simple shear cell equipped with flexible boundaries, which maintains a constant diameter to guarantee the “K0-condition.” The control system of cyclic, reconsolidation, and monotonic phases is described in detail. The experimental results show that neither the relative density, effective confining stress, cyclic stress ratio, nor the direction of shear strain play important roles in the monotonic behavior of post-liquefied soils. Moreover, the comparison between the monotonic response of virgin and post-liquefied soils (prepared by moist tamping technique) shows that it is not affected by the stress–strain history experienced by soils. It can be explained through a microstructural interpretation. According to which, the initial soil fabric generated with the moist tamping method and that formed during liquefaction remain almost unchanged because of the rotation of principal stress directions occurring during simple shear tests. A further confirmation is given by the results of tests performed on specimens prepared by air pluviation method.\",\"PeriodicalId\":55099,\"journal\":{\"name\":\"Geotechnical Testing Journal\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotechnical Testing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/gtj20230306\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotechnical Testing Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/gtj20230306","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1

摘要

实验证据表明,地震引起的砂土液化可不止一次发生。此外,尽管地震引起的超孔隙压力耗散导致了土密度的增加,但经历过液化的土的抗液化能力可能低于未发生液化的土。本文从分析液化后砂土的不排水单调特性入手,对具有柔性边界的简单剪切室进行了试验,该剪切室保持了恒定的直径,以保证“k0条件”。详细介绍了循环阶段、再固结阶段和单调阶段的控制系统。试验结果表明,相对密度、有效围应力、循环应力比和剪切应变方向对液化后土体的单调特性都没有重要影响。湿夯土与液化后土的单调响应比较表明,湿夯土的单调响应不受土体应力-应变历史的影响。这可以通过微观结构解释来解释。由此可知,由于单剪试验时主应力方向发生了旋转,湿夯土法产生的初始土构和液化过程中形成的土构基本保持不变。对用空气淋洗法制备的试样进行的试验结果进一步证实了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation on the Post-liquefaction Behavior of Sands in Simple Shear Conditions
Experimental evidence shows that earthquake induced liquefaction can occur more than once in sandy soils. Moreover, despite an increase in soil density caused by the dissipation of the excess pore pressure induced by earthquakes, the liquefaction resistance of soils that have experienced liquefaction may be lower than that of virgin soils. This paper offers insight into this topic starting from the analysis of the undrained monotonic behavior of post-liquefied sands by means of tests performed with a simple shear cell equipped with flexible boundaries, which maintains a constant diameter to guarantee the “K0-condition.” The control system of cyclic, reconsolidation, and monotonic phases is described in detail. The experimental results show that neither the relative density, effective confining stress, cyclic stress ratio, nor the direction of shear strain play important roles in the monotonic behavior of post-liquefied soils. Moreover, the comparison between the monotonic response of virgin and post-liquefied soils (prepared by moist tamping technique) shows that it is not affected by the stress–strain history experienced by soils. It can be explained through a microstructural interpretation. According to which, the initial soil fabric generated with the moist tamping method and that formed during liquefaction remain almost unchanged because of the rotation of principal stress directions occurring during simple shear tests. A further confirmation is given by the results of tests performed on specimens prepared by air pluviation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotechnical Testing Journal
Geotechnical Testing Journal 工程技术-地球科学综合
CiteScore
3.10
自引率
12.50%
发文量
53
审稿时长
3.6 months
期刊介绍: The purpose of the Geotechnical Testing Journal is (1) to provide a high-quality publication that informs the profession of new developments in soil and rock testing and related fields; (2) to provide a forum for the exchange of information, particularly that which leads to the development of new test procedures; and (3) to stimulate active participation of the profession in the work of ASTM International Committee D18 on Soil and Rock and related information. The editorial scope of this journal covers test methods for soil and rock, sampling, nomenclature, and practices relating to the determination of properties and behavior of soil and rock for engineering purposes, and for soil as a medium for plant growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信