真实世界图像字幕与场景识别的综合分析

Q4 Engineering
{"title":"真实世界图像字幕与场景识别的综合分析","authors":"","doi":"10.33140/jeee.02.03.14","DOIUrl":null,"url":null,"abstract":"Image captioning is a computer vision task that involves generating natural language descriptions for images. This method has numerous applications in various domains, including image retrieval systems, medicine, and various industries. However, while there has been significant research in image captioning, most studies have focused on high quality images or controlled environments, without exploring the challenges of real-world image captioning. Real-world image captioning involves complex and dynamic environments with numerous points of attention, with images which are often very poor in quality, making it a challenging task, even for humans. This paper evaluates the performance of various models that are built on top of different encoding mechanisms, language decoders and training procedures using a newly created real-world dataset that consists of over 800+ images of over 65 different scene classes, built using MIT Indoor scenes dataset. This dataset is captioned using the IC3 approach that generates more descriptive captions by summarizing the details that are covered by standard image captioning models from unique view-points of the image.","PeriodicalId":39047,"journal":{"name":"Journal of Electrical and Electronics Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Analysis of Real-World Image Captioning and Scene Identification\",\"authors\":\"\",\"doi\":\"10.33140/jeee.02.03.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image captioning is a computer vision task that involves generating natural language descriptions for images. This method has numerous applications in various domains, including image retrieval systems, medicine, and various industries. However, while there has been significant research in image captioning, most studies have focused on high quality images or controlled environments, without exploring the challenges of real-world image captioning. Real-world image captioning involves complex and dynamic environments with numerous points of attention, with images which are often very poor in quality, making it a challenging task, even for humans. This paper evaluates the performance of various models that are built on top of different encoding mechanisms, language decoders and training procedures using a newly created real-world dataset that consists of over 800+ images of over 65 different scene classes, built using MIT Indoor scenes dataset. This dataset is captioned using the IC3 approach that generates more descriptive captions by summarizing the details that are covered by standard image captioning models from unique view-points of the image.\",\"PeriodicalId\":39047,\"journal\":{\"name\":\"Journal of Electrical and Electronics Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical and Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/jeee.02.03.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/jeee.02.03.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

图像字幕是一项计算机视觉任务,涉及为图像生成自然语言描述。该方法在图像检索系统、医学和各种工业等领域具有广泛的应用。然而,尽管在图像字幕方面已经有了大量的研究,但大多数研究都集中在高质量图像或受控环境上,而没有探索现实世界图像字幕的挑战。现实世界的图像字幕涉及复杂和动态的环境,有许多关注点,图像质量通常很差,这使得它成为一项具有挑战性的任务,即使对人类来说也是如此。本文使用新创建的真实世界数据集评估了基于不同编码机制、语言解码器和训练程序构建的各种模型的性能,该数据集由超过65种不同场景类别的800多个图像组成,使用MIT室内场景数据集构建。该数据集使用IC3方法进行标注,该方法通过从图像的独特视点总结标准图像标注模型所涵盖的细节来生成更具描述性的标注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comprehensive Analysis of Real-World Image Captioning and Scene Identification
Image captioning is a computer vision task that involves generating natural language descriptions for images. This method has numerous applications in various domains, including image retrieval systems, medicine, and various industries. However, while there has been significant research in image captioning, most studies have focused on high quality images or controlled environments, without exploring the challenges of real-world image captioning. Real-world image captioning involves complex and dynamic environments with numerous points of attention, with images which are often very poor in quality, making it a challenging task, even for humans. This paper evaluates the performance of various models that are built on top of different encoding mechanisms, language decoders and training procedures using a newly created real-world dataset that consists of over 800+ images of over 65 different scene classes, built using MIT Indoor scenes dataset. This dataset is captioned using the IC3 approach that generates more descriptive captions by summarizing the details that are covered by standard image captioning models from unique view-points of the image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical and Electronics Engineering
Journal of Electrical and Electronics Engineering Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊介绍: Journal of Electrical and Electronics Engineering is a scientific interdisciplinary, application-oriented publication that offer to the researchers and to the PhD students the possibility to disseminate their novel and original scientific and research contributions in the field of electrical and electronics engineering. The articles are reviewed by professionals and the selection of the papers is based only on the quality of their content and following the next criteria: the papers presents the research results of the authors, the papers / the content of the papers have not been submitted or published elsewhere, the paper must be written in English, as well as the fact that the papers should include in the reference list papers already published in recent years in the Journal of Electrical and Electronics Engineering that present similar research results. The topics and instructions for authors of this journal can be found to the appropiate sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信