Kiran Kumar Karnati, Eshwaraiah Punna, Prasad V. G. V. A. Somarouthu, Balaji Rao Ravuri
{"title":"非镁基与镁基高熵合金的组织与物理性能比较研究","authors":"Kiran Kumar Karnati, Eshwaraiah Punna, Prasad V. G. V. A. Somarouthu, Balaji Rao Ravuri","doi":"10.1520/mpc20230015","DOIUrl":null,"url":null,"abstract":"In this investigation, (Ti-Mo-Zr)60Co20Cr20, (Ti-Mo-Zr)60Al30Si10 (non-magnesium-based), and (Ti-Mo-Zr)60Cu10Mg30 (magnesium-based) high-entropy alloy (HEA) samples are prepared via mechanical milling and then by spark plasma sintering technique. The microstructure morphology is examined using x-ray diffraction and scanning electron microscopy with energy-dispersive x-ray spectroscopy. The microstructure reveals that there would be a strong correlation between phase structure and sustainability for localized corrosion behavior. The lowest crystallite size of the magnesium-based HEA powder mixture suggests the highest corrosion resistance because of the solid-solution face-centered cubic and body-centered cubic phases for 20 h of milling. The correlation between the microstructural morphology and functional properties such as hardness, corrosion resistance, and potentiodynamic parameters are compared for both magnesium-based and non-magnesium-based HEAs and analyzed to elucidate their suitability for lightweight vehicle applications.","PeriodicalId":18234,"journal":{"name":"Materials Performance and Characterization","volume":"223 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and Physical Properties of Nonmagnesium and Magnesium-Based High-Entropy Alloys: A Comparison Study\",\"authors\":\"Kiran Kumar Karnati, Eshwaraiah Punna, Prasad V. G. V. A. Somarouthu, Balaji Rao Ravuri\",\"doi\":\"10.1520/mpc20230015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this investigation, (Ti-Mo-Zr)60Co20Cr20, (Ti-Mo-Zr)60Al30Si10 (non-magnesium-based), and (Ti-Mo-Zr)60Cu10Mg30 (magnesium-based) high-entropy alloy (HEA) samples are prepared via mechanical milling and then by spark plasma sintering technique. The microstructure morphology is examined using x-ray diffraction and scanning electron microscopy with energy-dispersive x-ray spectroscopy. The microstructure reveals that there would be a strong correlation between phase structure and sustainability for localized corrosion behavior. The lowest crystallite size of the magnesium-based HEA powder mixture suggests the highest corrosion resistance because of the solid-solution face-centered cubic and body-centered cubic phases for 20 h of milling. The correlation between the microstructural morphology and functional properties such as hardness, corrosion resistance, and potentiodynamic parameters are compared for both magnesium-based and non-magnesium-based HEAs and analyzed to elucidate their suitability for lightweight vehicle applications.\",\"PeriodicalId\":18234,\"journal\":{\"name\":\"Materials Performance and Characterization\",\"volume\":\"223 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Performance and Characterization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/mpc20230015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Performance and Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/mpc20230015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructure and Physical Properties of Nonmagnesium and Magnesium-Based High-Entropy Alloys: A Comparison Study
In this investigation, (Ti-Mo-Zr)60Co20Cr20, (Ti-Mo-Zr)60Al30Si10 (non-magnesium-based), and (Ti-Mo-Zr)60Cu10Mg30 (magnesium-based) high-entropy alloy (HEA) samples are prepared via mechanical milling and then by spark plasma sintering technique. The microstructure morphology is examined using x-ray diffraction and scanning electron microscopy with energy-dispersive x-ray spectroscopy. The microstructure reveals that there would be a strong correlation between phase structure and sustainability for localized corrosion behavior. The lowest crystallite size of the magnesium-based HEA powder mixture suggests the highest corrosion resistance because of the solid-solution face-centered cubic and body-centered cubic phases for 20 h of milling. The correlation between the microstructural morphology and functional properties such as hardness, corrosion resistance, and potentiodynamic parameters are compared for both magnesium-based and non-magnesium-based HEAs and analyzed to elucidate their suitability for lightweight vehicle applications.
期刊介绍:
The journal is published continuously in one annual issue online. Papers are published online as they are approved and edited. Special Issues may also be published on specific topics of interest to our readers. Materials Performance and Characterization provides high-quality papers on both the theoretical and practical aspects of the processing, structure, properties, and performance of materials used in: -mechanical -transportation -aerospace -energy and -medical devices. -Materials Covered: (but not limited to) -Metals and alloys -Glass and ceramics -Polymers -Composite materials -Textiles and nanomaterials