用曲率限定凸曲线附近的点阵数目

IF 0.5 Q3 MATHEMATICS
Ralph Howard, Ognian Trifonov
{"title":"用曲率限定凸曲线附近的点阵数目","authors":"Ralph Howard, Ognian Trifonov","doi":"10.7169/facm/2087","DOIUrl":null,"url":null,"abstract":"We prove explicitbounds on the number of lattice points on or near a convex curve in termsof geometric invariants such as length, curvature, and affine arclength. In several of our results we obtain the best possible constants. Our estimates hold for lattices more general than the usual lattice ofintegral points in the plane.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bounding the number of lattice pointsnear a convex curve by curvature\",\"authors\":\"Ralph Howard, Ognian Trifonov\",\"doi\":\"10.7169/facm/2087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove explicitbounds on the number of lattice points on or near a convex curve in termsof geometric invariants such as length, curvature, and affine arclength. In several of our results we obtain the best possible constants. Our estimates hold for lattices more general than the usual lattice ofintegral points in the plane.\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/2087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们用几何不变量,如长度、曲率和仿射弧,证明了凸曲线上或凸曲线附近的点阵数目的显式界限。在我们的几个结果中,我们得到了可能的最佳常数。我们的估计适用于比平面上通常的整点格更一般的格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding the number of lattice pointsnear a convex curve by curvature
We prove explicitbounds on the number of lattice points on or near a convex curve in termsof geometric invariants such as length, curvature, and affine arclength. In several of our results we obtain the best possible constants. Our estimates hold for lattices more general than the usual lattice ofintegral points in the plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信