{"title":"用曲率限定凸曲线附近的点阵数目","authors":"Ralph Howard, Ognian Trifonov","doi":"10.7169/facm/2087","DOIUrl":null,"url":null,"abstract":"We prove explicitbounds on the number of lattice points on or near a convex curve in termsof geometric invariants such as length, curvature, and affine arclength. In several of our results we obtain the best possible constants. Our estimates hold for lattices more general than the usual lattice ofintegral points in the plane.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bounding the number of lattice pointsnear a convex curve by curvature\",\"authors\":\"Ralph Howard, Ognian Trifonov\",\"doi\":\"10.7169/facm/2087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove explicitbounds on the number of lattice points on or near a convex curve in termsof geometric invariants such as length, curvature, and affine arclength. In several of our results we obtain the best possible constants. Our estimates hold for lattices more general than the usual lattice ofintegral points in the plane.\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/2087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bounding the number of lattice pointsnear a convex curve by curvature
We prove explicitbounds on the number of lattice points on or near a convex curve in termsof geometric invariants such as length, curvature, and affine arclength. In several of our results we obtain the best possible constants. Our estimates hold for lattices more general than the usual lattice ofintegral points in the plane.