三叉方程解的个数

IF 0.5 Q3 MATHEMATICS
Greg Knapp
{"title":"三叉方程解的个数","authors":"Greg Knapp","doi":"10.7169/facm/2093","DOIUrl":null,"url":null,"abstract":"In this paper, we study the number of integer pair solutions to the equation $|F(x,y)| = 1$ where $F(x,y) \\in \\Z[x,y]$ is an irreducible (over $\\Z$) binary form with degree $n \\geq 3$ and exactly three nonzero summands. In particular, we improve Thomas' explicit upper bounds on the number of solutions to this equation (see [13]). For instance, when $n \\geq 219$, we show that there are no more than 32 integer pair solutions to this equation when $n$ is odd and no more than 40 integer pair solutions to this equation when $n$ is even, an improvement on Thomas' work in [13], where he shows that there are no more than 38 such solutions when $n$ is odd and no more than 48 such solutions when $n$ is even.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The number of solutionsto the trinomial Thue equation\",\"authors\":\"Greg Knapp\",\"doi\":\"10.7169/facm/2093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the number of integer pair solutions to the equation $|F(x,y)| = 1$ where $F(x,y) \\\\in \\\\Z[x,y]$ is an irreducible (over $\\\\Z$) binary form with degree $n \\\\geq 3$ and exactly three nonzero summands. In particular, we improve Thomas' explicit upper bounds on the number of solutions to this equation (see [13]). For instance, when $n \\\\geq 219$, we show that there are no more than 32 integer pair solutions to this equation when $n$ is odd and no more than 40 integer pair solutions to this equation when $n$ is even, an improvement on Thomas' work in [13], where he shows that there are no more than 38 such solutions when $n$ is odd and no more than 48 such solutions when $n$ is even.\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/2093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了方程$|F(x,y)| = 1$的整数对解的个数,其中$F(x,y) \in \Z[x,y]$是次为$n \geq 3$的不可约(在$\Z$上)二进制形式,且恰好有三个非零和。特别地,我们改进了Thomas关于该方程解个数的显式上界(见[13])。例如,当$n \geq 219$时,我们表明,当$n$为奇数时,该方程的整数对解不超过32个,当$n$为偶数时,该方程的整数对解不超过40个,这是对Thomas在[13]中的工作的改进,他表明,当$n$为奇数时,该方程的整数对解不超过38个,当$n$为偶数时,该方程的整数对解不超过48个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The number of solutionsto the trinomial Thue equation
In this paper, we study the number of integer pair solutions to the equation $|F(x,y)| = 1$ where $F(x,y) \in \Z[x,y]$ is an irreducible (over $\Z$) binary form with degree $n \geq 3$ and exactly three nonzero summands. In particular, we improve Thomas' explicit upper bounds on the number of solutions to this equation (see [13]). For instance, when $n \geq 219$, we show that there are no more than 32 integer pair solutions to this equation when $n$ is odd and no more than 40 integer pair solutions to this equation when $n$ is even, an improvement on Thomas' work in [13], where he shows that there are no more than 38 such solutions when $n$ is odd and no more than 48 such solutions when $n$ is even.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信