一类具有弱奇异高振荡贝塞尔核的第二类volterra积分方程的修正配位方法

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Jianyu Wang, Chunhua Fang, Guifeng Zhang, Zaiyun Zhang
{"title":"一类具有弱奇异高振荡贝塞尔核的第二类volterra积分方程的修正配位方法","authors":"Jianyu Wang, Chunhua Fang, Guifeng Zhang, Zaiyun Zhang","doi":"10.11948/20220559","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the second kind of Volterra integral equations with weakly sinular highly oscillatory Bessel kernels by using two collocation methods: direct high-order interpolationorder (DO) and direct Hermite interpolation (DH). Based on hypergeometric and Gamma functions, we obtain a method for solving the modified moments $ \\int_{0}^{1}x^{\\alpha}(1-x)^{\\beta}J_{v}(\\omega x)dx $. Compared with the Filon-type $ (Q_{N}^{F}) $ method, piecewise constant collocation $ (Q_{N}^{L, 0}) $ method and linear collocation $ (Q_{N}^{L, 1}) $ method, we verified the efficiency of the method through error analysis and numerical examples.","PeriodicalId":48811,"journal":{"name":"Journal of Applied Analysis and Computation","volume":"103 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODIFIED COLLOCATION METHODS FOR SECOND KIND OF VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR HIGHLY OSCILLATORY BESSEL KERNELS\",\"authors\":\"Jianyu Wang, Chunhua Fang, Guifeng Zhang, Zaiyun Zhang\",\"doi\":\"10.11948/20220559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the second kind of Volterra integral equations with weakly sinular highly oscillatory Bessel kernels by using two collocation methods: direct high-order interpolationorder (DO) and direct Hermite interpolation (DH). Based on hypergeometric and Gamma functions, we obtain a method for solving the modified moments $ \\\\int_{0}^{1}x^{\\\\alpha}(1-x)^{\\\\beta}J_{v}(\\\\omega x)dx $. Compared with the Filon-type $ (Q_{N}^{F}) $ method, piecewise constant collocation $ (Q_{N}^{L, 0}) $ method and linear collocation $ (Q_{N}^{L, 1}) $ method, we verified the efficiency of the method through error analysis and numerical examples.\",\"PeriodicalId\":48811,\"journal\":{\"name\":\"Journal of Applied Analysis and Computation\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Analysis and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11948/20220559\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Analysis and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11948/20220559","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文利用直接高阶插值(DO)和直接Hermite插值(DH)两种配置方法,研究了具有弱奇异高振荡贝塞尔核的第二类Volterra积分方程。基于超几何函数和伽玛函数,我们得到了一种求解修正矩$ \int_{0}^{1}x^{\alpha}(1-x)^{\beta}J_{v}(\omega x)dx $的方法。与filon型$ (Q_{N}^{F}) $法、分段常数配置$ (Q_{N}^{L, 0}) $法和线性配置$ (Q_{N}^{L, 1}) $法进行比较,通过误差分析和数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MODIFIED COLLOCATION METHODS FOR SECOND KIND OF VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR HIGHLY OSCILLATORY BESSEL KERNELS
In this paper, we investigate the second kind of Volterra integral equations with weakly sinular highly oscillatory Bessel kernels by using two collocation methods: direct high-order interpolationorder (DO) and direct Hermite interpolation (DH). Based on hypergeometric and Gamma functions, we obtain a method for solving the modified moments $ \int_{0}^{1}x^{\alpha}(1-x)^{\beta}J_{v}(\omega x)dx $. Compared with the Filon-type $ (Q_{N}^{F}) $ method, piecewise constant collocation $ (Q_{N}^{L, 0}) $ method and linear collocation $ (Q_{N}^{L, 1}) $ method, we verified the efficiency of the method through error analysis and numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
9.10%
发文量
45
期刊介绍: The Journal of Applied Analysis and Computation (JAAC) is aimed to publish original research papers and survey articles on the theory, scientific computation and application of nonlinear analysis, differential equations and dynamical systems including interdisciplinary research topics on dynamics of mathematical models arising from major areas of science and engineering. The journal is published quarterly in February, April, June, August, October and December by Shanghai Normal University and Wilmington Scientific Publisher, and issued by Shanghai Normal University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信