{"title":"二维简并哈密顿向量场的概周期分岔","authors":"Xinyu Guan, Wen Si","doi":"10.11948/20220163","DOIUrl":null,"url":null,"abstract":"In this paper, we develop almost-periodic tori bifurcation theory for $ 2 $-dimensional degenerate Hamiltonian vector fields. With KAM theory and singularity theory, we show that the universal unfolding of completely degenerate Hamiltonian $ N(x, y)=x^2y+y^l $ and partially degenerate Hamiltonian $ M(x, y)=x^2+y^l, $ respectively, can persist under any small almost-periodic time-dependent perturbation and some appropriate non-resonant conditions on almost-periodic frequency $ \\omega=(\\cdots, \\omega_i, \\cdots)_{i\\in \\mathbb{Z}}\\in \\mathbb{R}^\\mathbb{Z}. $ We extend the analysis about almost-periodic bifurcations of one-dimensional degenerate vector fields considered in [<xref ref-type=\"bibr\" rid=\"b21\">21</xref>] to $ 2 $-dimensional degenerate vector fields. Our main results (Theorem 2.1 and Theorem 2.2) imply infinite-dimensional degenerate umbilical tori or normally parabolic tori bifurcate according to a generalised umbilical catastrophe or generalised cuspoid catastrophe under any small almost-periodic perturbation. For the proof in this paper we use the overall strategy of [<xref ref-type=\"bibr\" rid=\"b21\">21</xref>], which however has to be substantially developed to deal with the equations considered here.","PeriodicalId":48811,"journal":{"name":"Journal of Applied Analysis and Computation","volume":"25 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ALMOST-PERIODIC BIFURCATIONS FOR 2-DIMENSIONAL DEGENERATE HAMILTONIAN VECTOR FIELDS\",\"authors\":\"Xinyu Guan, Wen Si\",\"doi\":\"10.11948/20220163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop almost-periodic tori bifurcation theory for $ 2 $-dimensional degenerate Hamiltonian vector fields. With KAM theory and singularity theory, we show that the universal unfolding of completely degenerate Hamiltonian $ N(x, y)=x^2y+y^l $ and partially degenerate Hamiltonian $ M(x, y)=x^2+y^l, $ respectively, can persist under any small almost-periodic time-dependent perturbation and some appropriate non-resonant conditions on almost-periodic frequency $ \\\\omega=(\\\\cdots, \\\\omega_i, \\\\cdots)_{i\\\\in \\\\mathbb{Z}}\\\\in \\\\mathbb{R}^\\\\mathbb{Z}. $ We extend the analysis about almost-periodic bifurcations of one-dimensional degenerate vector fields considered in [<xref ref-type=\\\"bibr\\\" rid=\\\"b21\\\">21</xref>] to $ 2 $-dimensional degenerate vector fields. Our main results (Theorem 2.1 and Theorem 2.2) imply infinite-dimensional degenerate umbilical tori or normally parabolic tori bifurcate according to a generalised umbilical catastrophe or generalised cuspoid catastrophe under any small almost-periodic perturbation. For the proof in this paper we use the overall strategy of [<xref ref-type=\\\"bibr\\\" rid=\\\"b21\\\">21</xref>], which however has to be substantially developed to deal with the equations considered here.\",\"PeriodicalId\":48811,\"journal\":{\"name\":\"Journal of Applied Analysis and Computation\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Analysis and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11948/20220163\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Analysis and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11948/20220163","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
ALMOST-PERIODIC BIFURCATIONS FOR 2-DIMENSIONAL DEGENERATE HAMILTONIAN VECTOR FIELDS
In this paper, we develop almost-periodic tori bifurcation theory for $ 2 $-dimensional degenerate Hamiltonian vector fields. With KAM theory and singularity theory, we show that the universal unfolding of completely degenerate Hamiltonian $ N(x, y)=x^2y+y^l $ and partially degenerate Hamiltonian $ M(x, y)=x^2+y^l, $ respectively, can persist under any small almost-periodic time-dependent perturbation and some appropriate non-resonant conditions on almost-periodic frequency $ \omega=(\cdots, \omega_i, \cdots)_{i\in \mathbb{Z}}\in \mathbb{R}^\mathbb{Z}. $ We extend the analysis about almost-periodic bifurcations of one-dimensional degenerate vector fields considered in [21] to $ 2 $-dimensional degenerate vector fields. Our main results (Theorem 2.1 and Theorem 2.2) imply infinite-dimensional degenerate umbilical tori or normally parabolic tori bifurcate according to a generalised umbilical catastrophe or generalised cuspoid catastrophe under any small almost-periodic perturbation. For the proof in this paper we use the overall strategy of [21], which however has to be substantially developed to deal with the equations considered here.
期刊介绍:
The Journal of Applied Analysis and Computation (JAAC) is aimed to publish original research papers and survey articles on the theory, scientific computation and application of nonlinear analysis, differential equations and dynamical systems including interdisciplinary research topics on dynamics of mathematical models arising from major areas of science and engineering. The journal is published quarterly in February, April, June, August, October and December by Shanghai Normal University and Wilmington Scientific Publisher, and issued by Shanghai Normal University.