{"title":"金合欢癫痫相关植物成分的计算分析:计算机分析、分子建模和ADMET分析","authors":"Payal Mittal, Shristi Gupta, GirishChandra Arya","doi":"10.4103/ajprhc.ajprhc_59_23","DOIUrl":null,"url":null,"abstract":"Objective: This study aimed to evaluate the anticonvulsant potential of phytochemicals from Acacia farnesiana using molecular docking and compare their binding affinities with ethosuximide, a common anticonvulsant. Additionally, we conducted a comprehensive ADMET analysis of leucoxol, a promising phytochemical with strong docking scores against leucine-rich glioma-inactivated protein 1 (PDB ID-5Y30). Methods: Auto Dock Vina was employed for in silico analysis to predict binding affinities. Leucoxol exhibited significantly higher binding affinity (-7.9 kcal/mol) than ethosuximide (-4.9 kcal/mol), suggesting superior anticonvulsant potential. We thoroughly examined leucoxol’s ADMET profile to assess its pharmacokinetic and toxicological properties. Results: Comparative analysis indicated that leucoxol may be a more effective anticonvulsant with reduced toxicity compared to ethosuximide. It displayed strong binding and a favorable ADMET profile. Conclusion: Phytochemicals from Acacia farnesiana, especially leucoxol, exhibit promising binding affinities compared to ethosuximide, indicating their potential as anticonvulsant agents. Leucoxol, in particular, demonstrates strong anticonvulsant potential and a favorable ADMET profile, making it a candidate for further research as an anticonvulsant with reduced toxicity. However, additional experimental and clinical investigations are needed to confirm their efficacy and safety in treating convulsive disorders.","PeriodicalId":8534,"journal":{"name":"Asian Journal of Pharmaceutical Research and Health Care","volume":"28 1","pages":"0"},"PeriodicalIF":0.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational insights into the epilepsy-related phytoconstituents of <i>Acacia farnesiana</i>: <i>In silico</i> analysis, molecular modeling, and ADMET profiling\",\"authors\":\"Payal Mittal, Shristi Gupta, GirishChandra Arya\",\"doi\":\"10.4103/ajprhc.ajprhc_59_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: This study aimed to evaluate the anticonvulsant potential of phytochemicals from Acacia farnesiana using molecular docking and compare their binding affinities with ethosuximide, a common anticonvulsant. Additionally, we conducted a comprehensive ADMET analysis of leucoxol, a promising phytochemical with strong docking scores against leucine-rich glioma-inactivated protein 1 (PDB ID-5Y30). Methods: Auto Dock Vina was employed for in silico analysis to predict binding affinities. Leucoxol exhibited significantly higher binding affinity (-7.9 kcal/mol) than ethosuximide (-4.9 kcal/mol), suggesting superior anticonvulsant potential. We thoroughly examined leucoxol’s ADMET profile to assess its pharmacokinetic and toxicological properties. Results: Comparative analysis indicated that leucoxol may be a more effective anticonvulsant with reduced toxicity compared to ethosuximide. It displayed strong binding and a favorable ADMET profile. Conclusion: Phytochemicals from Acacia farnesiana, especially leucoxol, exhibit promising binding affinities compared to ethosuximide, indicating their potential as anticonvulsant agents. Leucoxol, in particular, demonstrates strong anticonvulsant potential and a favorable ADMET profile, making it a candidate for further research as an anticonvulsant with reduced toxicity. However, additional experimental and clinical investigations are needed to confirm their efficacy and safety in treating convulsive disorders.\",\"PeriodicalId\":8534,\"journal\":{\"name\":\"Asian Journal of Pharmaceutical Research and Health Care\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Pharmaceutical Research and Health Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/ajprhc.ajprhc_59_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Research and Health Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/ajprhc.ajprhc_59_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
目的:利用分子对接的方法评价金合欢植物化学物质的抗惊厥潜能,并比较其与常用的抗惊厥药乙氧亚胺的结合亲和力。此外,我们对亮醇进行了全面的ADMET分析,亮醇是一种很有前景的植物化学物质,与富含亮氨酸的胶质瘤失活蛋白1 (PDB ID-5Y30)有很强的对接评分。方法:采用Auto Dock Vina进行计算机分析,预测其结合亲和力。亮木醇的结合亲和力(-7.9 kcal/mol)明显高于乙氧亚胺(-4.9 kcal/mol),表明亮木醇具有更强的抗惊厥潜能。我们彻底检查了亮醇的ADMET谱,以评估其药代动力学和毒理学特性。结果:对比分析表明,与乙氧亚胺相比,乙酰氨基酚可能是一种更有效的抗惊厥药,且毒性更低。它具有很强的结合性和良好的ADMET谱。结论:金合欢中的植物化学物质,特别是白木酚,与乙氧亚胺相比,具有良好的结合亲和力,表明其具有抗惊厥药物的潜力。特别是亮木醇,显示出强大的抗惊厥潜力和良好的ADMET谱,使其成为进一步研究的候选抗惊厥药,具有降低毒性。然而,需要进一步的实验和临床研究来证实其治疗惊厥疾病的有效性和安全性。
Computational insights into the epilepsy-related phytoconstituents of Acacia farnesiana: In silico analysis, molecular modeling, and ADMET profiling
Objective: This study aimed to evaluate the anticonvulsant potential of phytochemicals from Acacia farnesiana using molecular docking and compare their binding affinities with ethosuximide, a common anticonvulsant. Additionally, we conducted a comprehensive ADMET analysis of leucoxol, a promising phytochemical with strong docking scores against leucine-rich glioma-inactivated protein 1 (PDB ID-5Y30). Methods: Auto Dock Vina was employed for in silico analysis to predict binding affinities. Leucoxol exhibited significantly higher binding affinity (-7.9 kcal/mol) than ethosuximide (-4.9 kcal/mol), suggesting superior anticonvulsant potential. We thoroughly examined leucoxol’s ADMET profile to assess its pharmacokinetic and toxicological properties. Results: Comparative analysis indicated that leucoxol may be a more effective anticonvulsant with reduced toxicity compared to ethosuximide. It displayed strong binding and a favorable ADMET profile. Conclusion: Phytochemicals from Acacia farnesiana, especially leucoxol, exhibit promising binding affinities compared to ethosuximide, indicating their potential as anticonvulsant agents. Leucoxol, in particular, demonstrates strong anticonvulsant potential and a favorable ADMET profile, making it a candidate for further research as an anticonvulsant with reduced toxicity. However, additional experimental and clinical investigations are needed to confirm their efficacy and safety in treating convulsive disorders.