Eduardo A. Alarcon, Marcos R. Batista, Alysson Cunha, Jesus C. Da Mota, Ronaldo A. Santos
{"title":"半群理论在多层多孔介质燃烧问题中的应用","authors":"Eduardo A. Alarcon, Marcos R. Batista, Alysson Cunha, Jesus C. Da Mota, Ronaldo A. Santos","doi":"10.11948/20220333","DOIUrl":null,"url":null,"abstract":"This study proved that the Cauchy problem for a one-dimensional reaction-diffusion-convection system is locally and globally well-posed in $ \\mathtt{H}^2(\\mathbb{R})$. The system modeled a gasless combustion front through a multi-layer porous medium when the fuel concentration in each layer was a known function. Combustion has critical practical porous media applications, such as in in-situ combustion processes in oil reservoirs and several other areas. Earlier studies considered physical parameters (e.g., porosity, thermal conductivity, heat capacity, and initial fuel concentration) constant. Here, we consider a more realistic model where these parameters are functions of the spatial variable rather than constants. Furthermore, in previous studies, we did not consider the continuity of the solution regarding the initial data and parameters, unlike the current study. This proof uses a novel approach to combustion problems in porous media. We follow the abstract semigroups theory of operators in the Hilbert space and the well-known Kato's theory for a well-posed associated initial value problem.","PeriodicalId":48811,"journal":{"name":"Journal of Applied Analysis and Computation","volume":"97 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"APPLICATION OF THE SEMIGROUP THEORY TO A COMBUSTION PROBLEM IN A MULTI-LAYER POROUS MEDIUM\",\"authors\":\"Eduardo A. Alarcon, Marcos R. Batista, Alysson Cunha, Jesus C. Da Mota, Ronaldo A. Santos\",\"doi\":\"10.11948/20220333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proved that the Cauchy problem for a one-dimensional reaction-diffusion-convection system is locally and globally well-posed in $ \\\\mathtt{H}^2(\\\\mathbb{R})$. The system modeled a gasless combustion front through a multi-layer porous medium when the fuel concentration in each layer was a known function. Combustion has critical practical porous media applications, such as in in-situ combustion processes in oil reservoirs and several other areas. Earlier studies considered physical parameters (e.g., porosity, thermal conductivity, heat capacity, and initial fuel concentration) constant. Here, we consider a more realistic model where these parameters are functions of the spatial variable rather than constants. Furthermore, in previous studies, we did not consider the continuity of the solution regarding the initial data and parameters, unlike the current study. This proof uses a novel approach to combustion problems in porous media. We follow the abstract semigroups theory of operators in the Hilbert space and the well-known Kato's theory for a well-posed associated initial value problem.\",\"PeriodicalId\":48811,\"journal\":{\"name\":\"Journal of Applied Analysis and Computation\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Analysis and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11948/20220333\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Analysis and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11948/20220333","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
APPLICATION OF THE SEMIGROUP THEORY TO A COMBUSTION PROBLEM IN A MULTI-LAYER POROUS MEDIUM
This study proved that the Cauchy problem for a one-dimensional reaction-diffusion-convection system is locally and globally well-posed in $ \mathtt{H}^2(\mathbb{R})$. The system modeled a gasless combustion front through a multi-layer porous medium when the fuel concentration in each layer was a known function. Combustion has critical practical porous media applications, such as in in-situ combustion processes in oil reservoirs and several other areas. Earlier studies considered physical parameters (e.g., porosity, thermal conductivity, heat capacity, and initial fuel concentration) constant. Here, we consider a more realistic model where these parameters are functions of the spatial variable rather than constants. Furthermore, in previous studies, we did not consider the continuity of the solution regarding the initial data and parameters, unlike the current study. This proof uses a novel approach to combustion problems in porous media. We follow the abstract semigroups theory of operators in the Hilbert space and the well-known Kato's theory for a well-posed associated initial value problem.
期刊介绍:
The Journal of Applied Analysis and Computation (JAAC) is aimed to publish original research papers and survey articles on the theory, scientific computation and application of nonlinear analysis, differential equations and dynamical systems including interdisciplinary research topics on dynamics of mathematical models arising from major areas of science and engineering. The journal is published quarterly in February, April, June, August, October and December by Shanghai Normal University and Wilmington Scientific Publisher, and issued by Shanghai Normal University.