无穷区间上<i> /i>-拉普拉斯算子的分数边值问题的可解性

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Xingfang Feng, Yucheng Li
{"title":"无穷区间上&lt;i&gt; /i&gt;-拉普拉斯算子的分数边值问题的可解性","authors":"Xingfang Feng, Yucheng Li","doi":"10.11948/20220329","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the third order $ p $-Laplacian boundary value problem researched by S. Iyase and O. Imaga in [<xref ref-type=\"bibr\" rid=\"b11\">11</xref>] to the fractional differential equation. Firstly, we construct a mild Banach space and establish an appropriate compactness criterion. Then applying the Schauder's fixed point theorem, we obtain a sufficient condition for existence of at least one solution to the fractional differential equation with $ p $-Laplacian operator on an infinite interval. As an application, an example is given to illustrate our main result.","PeriodicalId":48811,"journal":{"name":"Journal of Applied Analysis and Computation","volume":"2014 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOLVABILITY OF A FRACTIONAL BOUNDARY VALUE PROBLEM WITH &lt;i&gt;P&lt;/i&gt;-LAPLACIAN OPERATOR ON AN INFINITE INTERVAL\",\"authors\":\"Xingfang Feng, Yucheng Li\",\"doi\":\"10.11948/20220329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the third order $ p $-Laplacian boundary value problem researched by S. Iyase and O. Imaga in [<xref ref-type=\\\"bibr\\\" rid=\\\"b11\\\">11</xref>] to the fractional differential equation. Firstly, we construct a mild Banach space and establish an appropriate compactness criterion. Then applying the Schauder's fixed point theorem, we obtain a sufficient condition for existence of at least one solution to the fractional differential equation with $ p $-Laplacian operator on an infinite interval. As an application, an example is given to illustrate our main result.\",\"PeriodicalId\":48811,\"journal\":{\"name\":\"Journal of Applied Analysis and Computation\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Analysis and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11948/20220329\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Analysis and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11948/20220329","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文将S. Iyase和O. Imaga在[11]中研究的三阶$ p $-拉普拉斯边值问题推广到分数阶微分方程。首先构造了一个温和的Banach空间,并建立了一个适当的紧性准则。然后应用Schauder不动点定理,得到了具有p $-拉普拉斯算子的分数阶微分方程在无限区间上存在至少一个解的充分条件。作为应用,给出了一个例子来说明我们的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOLVABILITY OF A FRACTIONAL BOUNDARY VALUE PROBLEM WITH <i>P</i>-LAPLACIAN OPERATOR ON AN INFINITE INTERVAL
In this paper, we extend the third order $ p $-Laplacian boundary value problem researched by S. Iyase and O. Imaga in [11] to the fractional differential equation. Firstly, we construct a mild Banach space and establish an appropriate compactness criterion. Then applying the Schauder's fixed point theorem, we obtain a sufficient condition for existence of at least one solution to the fractional differential equation with $ p $-Laplacian operator on an infinite interval. As an application, an example is given to illustrate our main result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
9.10%
发文量
45
期刊介绍: The Journal of Applied Analysis and Computation (JAAC) is aimed to publish original research papers and survey articles on the theory, scientific computation and application of nonlinear analysis, differential equations and dynamical systems including interdisciplinary research topics on dynamics of mathematical models arising from major areas of science and engineering. The journal is published quarterly in February, April, June, August, October and December by Shanghai Normal University and Wilmington Scientific Publisher, and issued by Shanghai Normal University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信