利用卫星数据和机器学习算法的区域尺度植被动态分析:一种多因子方法

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Abolfazl Abdollahi, Biswajeet Pradhan, Abdullah Alamri
{"title":"利用卫星数据和机器学习算法的区域尺度植被动态分析:一种多因子方法","authors":"Abolfazl Abdollahi, Biswajeet Pradhan, Abdullah Alamri","doi":"10.2478/ijssis-2023-0013","DOIUrl":null,"url":null,"abstract":"Abstract Accurate vegetation analysis is crucial amid accelerating global changes and human activities. Achieving precise characterization with multi-temporal Sentinel-2 data is challenging. In this article, we present a comprehensive analysis of 2021's seasonal vegetation cover in Greater Sydney using Google Earth Engine (GEE) to process Sentinel-2 data. Using the random forest (RF) method, we performed image classification for vegetation patterns. Supplementary factors such as topographic elements, texture information, and vegetation indices enhanced the process and overcome limited input variables. Our model outperformed existing methods, offering superior insights into season-based vegetation dynamics. Multi-temporal Sentinel-2 data, topographic elements, vegetation indices, and textural factors proved to be critical for accurate analysis. Leveraging GEE and rich Sentinel-2 data, our study would benefit decision-makers involved in vegetation monitoring.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":"70 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional-Scale Analysis of Vegetation Dynamics Using Satellite Data and Machine Learning Algorithms: A Multi-Factorial Approach\",\"authors\":\"Abolfazl Abdollahi, Biswajeet Pradhan, Abdullah Alamri\",\"doi\":\"10.2478/ijssis-2023-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Accurate vegetation analysis is crucial amid accelerating global changes and human activities. Achieving precise characterization with multi-temporal Sentinel-2 data is challenging. In this article, we present a comprehensive analysis of 2021's seasonal vegetation cover in Greater Sydney using Google Earth Engine (GEE) to process Sentinel-2 data. Using the random forest (RF) method, we performed image classification for vegetation patterns. Supplementary factors such as topographic elements, texture information, and vegetation indices enhanced the process and overcome limited input variables. Our model outperformed existing methods, offering superior insights into season-based vegetation dynamics. Multi-temporal Sentinel-2 data, topographic elements, vegetation indices, and textural factors proved to be critical for accurate analysis. Leveraging GEE and rich Sentinel-2 data, our study would benefit decision-makers involved in vegetation monitoring.\",\"PeriodicalId\":45623,\"journal\":{\"name\":\"International Journal on Smart Sensing and Intelligent Systems\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Smart Sensing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ijssis-2023-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijssis-2023-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在全球气候变化和人类活动加速的背景下,准确的植被分析至关重要。利用多时相Sentinel-2数据实现精确表征是一项挑战。在本文中,我们使用谷歌地球引擎(GEE)处理Sentinel-2数据,对2021年大悉尼地区的季节性植被覆盖进行了全面分析。采用随机森林(RF)方法对植被模式进行图像分类。地形要素、纹理信息和植被指数等补充因子增强了这一过程,克服了有限的输入变量。我们的模型优于现有的方法,提供了基于季节的植被动态的卓越见解。多时相Sentinel-2数据、地形要素、植被指数和纹理因子被证明是准确分析的关键。利用GEE和丰富的Sentinel-2数据,我们的研究将使参与植被监测的决策者受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regional-Scale Analysis of Vegetation Dynamics Using Satellite Data and Machine Learning Algorithms: A Multi-Factorial Approach
Abstract Accurate vegetation analysis is crucial amid accelerating global changes and human activities. Achieving precise characterization with multi-temporal Sentinel-2 data is challenging. In this article, we present a comprehensive analysis of 2021's seasonal vegetation cover in Greater Sydney using Google Earth Engine (GEE) to process Sentinel-2 data. Using the random forest (RF) method, we performed image classification for vegetation patterns. Supplementary factors such as topographic elements, texture information, and vegetation indices enhanced the process and overcome limited input variables. Our model outperformed existing methods, offering superior insights into season-based vegetation dynamics. Multi-temporal Sentinel-2 data, topographic elements, vegetation indices, and textural factors proved to be critical for accurate analysis. Leveraging GEE and rich Sentinel-2 data, our study would benefit decision-makers involved in vegetation monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
8.30%
发文量
15
审稿时长
8 weeks
期刊介绍: nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信