{"title":"胶原相关piRNA在硬皮病患者培养的真皮成纤维细胞中表达失调","authors":"Minako Tanaka, Yutaka Inaba, Azusa Yariyama, Yumi Nakatani, Kayo Kunimoto, Chikako Kaminaka, Yuki Yamamoto, Katsunari Makino, Satoshi Fukushima, Masatoshi Jinnin","doi":"10.5582/irdr.2023.01056","DOIUrl":null,"url":null,"abstract":"PIWI-interacting RNA (piRNA) is a class of recently discovered small non-coding RNAs. piRNAs derive from an initial transcript encompassing a piRNA cluster via a unique biosynthesis process, interact with PIWI proteins, bind to specific targets, and recruit chromatin modifiers to enable transcriptional repression. Abnormal expression of PIWI proteins and piRNAs has been reported in some human cancers, with participation of some PIWI/piRNAs complexes in tumorigenesis and association with cancer prognosis. Their expression in patients with systemic sclerosis (SSc) has not been widely elucidated. PIWI/piRNAs and their role in the pathogenesis of collagen accumulation in SSc was therefore investigated; no difference was found in the PIWIL1-4 levels between normal and cultured SSc dermal fibroblasts. Among piRNAs predicted to target SSc-related molecules, we first found significant piR-32364 up-regulation in SSc dermal fibroblasts, likely due to intrinsic TGF-βsignaling. Forced piR-32364 overexpression in normal fibroblasts significantly reduced COL1A1 expression both at mRNA and protein levels, but not COL1A2. Thus, piR-32364 overexpression in SSc fibroblasts may be the negative feedback against collagen up-regulation, which could suggest the potential of piRNAs as a therapeutic target.","PeriodicalId":14420,"journal":{"name":"Intractable & rare diseases research","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression of collagen-related piRNA is dysregulated in cultured dermal fibroblasts derived from patients with scleroderma\",\"authors\":\"Minako Tanaka, Yutaka Inaba, Azusa Yariyama, Yumi Nakatani, Kayo Kunimoto, Chikako Kaminaka, Yuki Yamamoto, Katsunari Makino, Satoshi Fukushima, Masatoshi Jinnin\",\"doi\":\"10.5582/irdr.2023.01056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PIWI-interacting RNA (piRNA) is a class of recently discovered small non-coding RNAs. piRNAs derive from an initial transcript encompassing a piRNA cluster via a unique biosynthesis process, interact with PIWI proteins, bind to specific targets, and recruit chromatin modifiers to enable transcriptional repression. Abnormal expression of PIWI proteins and piRNAs has been reported in some human cancers, with participation of some PIWI/piRNAs complexes in tumorigenesis and association with cancer prognosis. Their expression in patients with systemic sclerosis (SSc) has not been widely elucidated. PIWI/piRNAs and their role in the pathogenesis of collagen accumulation in SSc was therefore investigated; no difference was found in the PIWIL1-4 levels between normal and cultured SSc dermal fibroblasts. Among piRNAs predicted to target SSc-related molecules, we first found significant piR-32364 up-regulation in SSc dermal fibroblasts, likely due to intrinsic TGF-βsignaling. Forced piR-32364 overexpression in normal fibroblasts significantly reduced COL1A1 expression both at mRNA and protein levels, but not COL1A2. Thus, piR-32364 overexpression in SSc fibroblasts may be the negative feedback against collagen up-regulation, which could suggest the potential of piRNAs as a therapeutic target.\",\"PeriodicalId\":14420,\"journal\":{\"name\":\"Intractable & rare diseases research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intractable & rare diseases research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5582/irdr.2023.01056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intractable & rare diseases research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5582/irdr.2023.01056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Expression of collagen-related piRNA is dysregulated in cultured dermal fibroblasts derived from patients with scleroderma
PIWI-interacting RNA (piRNA) is a class of recently discovered small non-coding RNAs. piRNAs derive from an initial transcript encompassing a piRNA cluster via a unique biosynthesis process, interact with PIWI proteins, bind to specific targets, and recruit chromatin modifiers to enable transcriptional repression. Abnormal expression of PIWI proteins and piRNAs has been reported in some human cancers, with participation of some PIWI/piRNAs complexes in tumorigenesis and association with cancer prognosis. Their expression in patients with systemic sclerosis (SSc) has not been widely elucidated. PIWI/piRNAs and their role in the pathogenesis of collagen accumulation in SSc was therefore investigated; no difference was found in the PIWIL1-4 levels between normal and cultured SSc dermal fibroblasts. Among piRNAs predicted to target SSc-related molecules, we first found significant piR-32364 up-regulation in SSc dermal fibroblasts, likely due to intrinsic TGF-βsignaling. Forced piR-32364 overexpression in normal fibroblasts significantly reduced COL1A1 expression both at mRNA and protein levels, but not COL1A2. Thus, piR-32364 overexpression in SSc fibroblasts may be the negative feedback against collagen up-regulation, which could suggest the potential of piRNAs as a therapeutic target.