高维的近最优中心极限定理和自举近似

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Victor Chernozhukov, Denis Chetverikov, Yuta Koike
{"title":"高维的近最优中心极限定理和自举近似","authors":"Victor Chernozhukov, Denis Chetverikov, Yuta Koike","doi":"10.1214/22-aap1870","DOIUrl":null,"url":null,"abstract":"In this paper, we derive new, nearly optimal bounds for the Gaussian approximation to scaled averages of n independent high-dimensional centered random vectors X1,…,Xn over the class of rectangles in the case when the covariance matrix of the scaled average is nondegenerate. In the case of bounded Xi’s, the implied bound for the Kolmogorov distance between the distribution of the scaled average and the Gaussian vector takes the form C(Bn2log3d/n)1/2logn, where d is the dimension of the vectors and Bn is a uniform envelope constant on components of Xi’s. This bound is sharp in terms of d and Bn, and is nearly (up to logn) sharp in terms of the sample size n. In addition, we show that similar bounds hold for the multiplier and empirical bootstrap approximations. Moreover, we establish bounds that allow for unbounded Xi’s, formulated solely in terms of moments of Xi’s. Finally, we demonstrate that the bounds can be further improved in some special smooth and moment-constrained cases.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"42 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nearly optimal central limit theorem and bootstrap approximations in high dimensions\",\"authors\":\"Victor Chernozhukov, Denis Chetverikov, Yuta Koike\",\"doi\":\"10.1214/22-aap1870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive new, nearly optimal bounds for the Gaussian approximation to scaled averages of n independent high-dimensional centered random vectors X1,…,Xn over the class of rectangles in the case when the covariance matrix of the scaled average is nondegenerate. In the case of bounded Xi’s, the implied bound for the Kolmogorov distance between the distribution of the scaled average and the Gaussian vector takes the form C(Bn2log3d/n)1/2logn, where d is the dimension of the vectors and Bn is a uniform envelope constant on components of Xi’s. This bound is sharp in terms of d and Bn, and is nearly (up to logn) sharp in terms of the sample size n. In addition, we show that similar bounds hold for the multiplier and empirical bootstrap approximations. Moreover, we establish bounds that allow for unbounded Xi’s, formulated solely in terms of moments of Xi’s. Finally, we demonstrate that the bounds can be further improved in some special smooth and moment-constrained cases.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1870\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1870","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了n个独立的高维中心随机向量X1,…,Xn在矩形类上的标度平均值的协方差矩阵为非简并时的高斯逼近的近似最优界。这个边界在d和Bn方面是尖锐的,并且在样本量n方面几乎(高达logn)尖锐。此外,我们表明对于乘子和经验自举近似也有类似的边界。最后,我们证明了在一些特殊的光滑和矩约束情况下,边界可以进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nearly optimal central limit theorem and bootstrap approximations in high dimensions
In this paper, we derive new, nearly optimal bounds for the Gaussian approximation to scaled averages of n independent high-dimensional centered random vectors X1,…,Xn over the class of rectangles in the case when the covariance matrix of the scaled average is nondegenerate. In the case of bounded Xi’s, the implied bound for the Kolmogorov distance between the distribution of the scaled average and the Gaussian vector takes the form C(Bn2log3d/n)1/2logn, where d is the dimension of the vectors and Bn is a uniform envelope constant on components of Xi’s. This bound is sharp in terms of d and Bn, and is nearly (up to logn) sharp in terms of the sample size n. In addition, we show that similar bounds hold for the multiplier and empirical bootstrap approximations. Moreover, we establish bounds that allow for unbounded Xi’s, formulated solely in terms of moments of Xi’s. Finally, we demonstrate that the bounds can be further improved in some special smooth and moment-constrained cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信