基于高分五号高光谱波段选择的矿区周边土壤Cd含量反演

IF 0.9 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
刘雯 Liu Wen, 韩玲 Han Ling, 刘明 Liu Ming, 李良志 Li Liangzhi
{"title":"基于高分五号高光谱波段选择的矿区周边土壤Cd含量反演","authors":"刘雯 Liu Wen, 韩玲 Han Ling, 刘明 Liu Ming, 李良志 Li Liangzhi","doi":"10.3788/lop222358","DOIUrl":null,"url":null,"abstract":"及时准确地掌握土壤重金属含量和分布尤为重要,基于高分五号卫星高光谱影像,对潼关县土壤Cd含量进行大范围反演。为准确筛选Cd元素的特征波段,提高模型反演精度,通过特征编码和随机变异,耦合竞争性自适应重加权算法与遗传算法(CARS-GA),按照先全局后局部的搜索策略对Cd元素的特征波段进行搜索,并在标准正态变换(SNV)、一阶微分(FD)两种光谱增强方式下,比较基于CARS-GA方法与其他波段选择方法(相关系数分析法、CARS算法)构建的偏最小二乘模型(PLSR)精度,最后选择最优模型应用到整个潼关县裸地区域。实验结果表明:采用CARS-GA算法进行波段选择时,基于2种光谱变换数据构建的PLSR模型精度均明显高于相关系数分析法和CARS算法所构建的模型精度,FD光谱变换中验证集的决定系数分别提高了0.288、0.093,SNV变换光谱中验证集的决定系数分别提高了0.372、0.088。该结果表明了利用CARS-GA算法进行波段选择可有效增强Cd含量估测模型的鲁棒性,从而为环境污染评价及生态保护提供更好的数据支撑。","PeriodicalId":51502,"journal":{"name":"激光与光电子学进展","volume":"136 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"基于高分五号高光谱波段选择的矿区周边土壤Cd含量反演\",\"authors\":\"刘雯 Liu Wen, 韩玲 Han Ling, 刘明 Liu Ming, 李良志 Li Liangzhi\",\"doi\":\"10.3788/lop222358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"及时准确地掌握土壤重金属含量和分布尤为重要,基于高分五号卫星高光谱影像,对潼关县土壤Cd含量进行大范围反演。为准确筛选Cd元素的特征波段,提高模型反演精度,通过特征编码和随机变异,耦合竞争性自适应重加权算法与遗传算法(CARS-GA),按照先全局后局部的搜索策略对Cd元素的特征波段进行搜索,并在标准正态变换(SNV)、一阶微分(FD)两种光谱增强方式下,比较基于CARS-GA方法与其他波段选择方法(相关系数分析法、CARS算法)构建的偏最小二乘模型(PLSR)精度,最后选择最优模型应用到整个潼关县裸地区域。实验结果表明:采用CARS-GA算法进行波段选择时,基于2种光谱变换数据构建的PLSR模型精度均明显高于相关系数分析法和CARS算法所构建的模型精度,FD光谱变换中验证集的决定系数分别提高了0.288、0.093,SNV变换光谱中验证集的决定系数分别提高了0.372、0.088。该结果表明了利用CARS-GA算法进行波段选择可有效增强Cd含量估测模型的鲁棒性,从而为环境污染评价及生态保护提供更好的数据支撑。\",\"PeriodicalId\":51502,\"journal\":{\"name\":\"激光与光电子学进展\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"激光与光电子学进展\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3788/lop222358\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"激光与光电子学进展","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/lop222358","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

及时准确地掌握土壤重金属含量和分布尤为重要,基于高分五号卫星高光谱影像,对潼关县土壤Cd含量进行大范围反演。为准确筛选Cd元素的特征波段,提高模型反演精度,通过特征编码和随机变异,耦合竞争性自适应重加权算法与遗传算法(CARS-GA),按照先全局后局部的搜索策略对Cd元素的特征波段进行搜索,并在标准正态变换(SNV)、一阶微分(FD)两种光谱增强方式下,比较基于CARS-GA方法与其他波段选择方法(相关系数分析法、CARS算法)构建的偏最小二乘模型(PLSR)精度,最后选择最优模型应用到整个潼关县裸地区域。实验结果表明:采用CARS-GA算法进行波段选择时,基于2种光谱变换数据构建的PLSR模型精度均明显高于相关系数分析法和CARS算法所构建的模型精度,FD光谱变换中验证集的决定系数分别提高了0.288、0.093,SNV变换光谱中验证集的决定系数分别提高了0.372、0.088。该结果表明了利用CARS-GA算法进行波段选择可有效增强Cd含量估测模型的鲁棒性,从而为环境污染评价及生态保护提供更好的数据支撑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
基于高分五号高光谱波段选择的矿区周边土壤Cd含量反演
及时准确地掌握土壤重金属含量和分布尤为重要,基于高分五号卫星高光谱影像,对潼关县土壤Cd含量进行大范围反演。为准确筛选Cd元素的特征波段,提高模型反演精度,通过特征编码和随机变异,耦合竞争性自适应重加权算法与遗传算法(CARS-GA),按照先全局后局部的搜索策略对Cd元素的特征波段进行搜索,并在标准正态变换(SNV)、一阶微分(FD)两种光谱增强方式下,比较基于CARS-GA方法与其他波段选择方法(相关系数分析法、CARS算法)构建的偏最小二乘模型(PLSR)精度,最后选择最优模型应用到整个潼关县裸地区域。实验结果表明:采用CARS-GA算法进行波段选择时,基于2种光谱变换数据构建的PLSR模型精度均明显高于相关系数分析法和CARS算法所构建的模型精度,FD光谱变换中验证集的决定系数分别提高了0.288、0.093,SNV变换光谱中验证集的决定系数分别提高了0.372、0.088。该结果表明了利用CARS-GA算法进行波段选择可有效增强Cd含量估测模型的鲁棒性,从而为环境污染评价及生态保护提供更好的数据支撑。
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
50.00%
发文量
18006
期刊介绍: Laser & Optoelectronics Progress, the first laser and optoelectronics journal published in China. The main columns include general, lasers and laser optics, fiber optics and optical communications, optical design and fabrication, materials, image processing, imaging systems, optical devices, remote sensing and sensors, atmospheric optics and oceanic optics, diffraction and gratings, atomic and molecular physics, detectors, thin films, ultrafast optics, etc. The journal is included in ESCI, INSPEC, Scopus, CSCD, Chinese Core Journals, Chinese Science and Technology Core Journals, and T2 level of the Classified Catalogue of High Quality Science and Technology Journals in Optical Engineering and Optical Fields, and other databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信