时间-分数阶扩散方程同时反演的分数阶landweber迭代法

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Jin Wen, Chong-Wang Yue, Zhuan-Xia Liu, Donal O'Regan
{"title":"时间-分数阶扩散方程同时反演的分数阶landweber迭代法","authors":"Jin Wen, Chong-Wang Yue, Zhuan-Xia Liu, Donal O'Regan","doi":"10.11948/20230051","DOIUrl":null,"url":null,"abstract":"In the present paper, we study the problem to identify the space-dependent source term and initial value simultaneously for a time-fractional diffusion equation. This inverse problem is ill-posed, and we use the idea of decoupling to turn it into two operator equations based on the Fourier method. To solve the inverse problem, a fractional Landweber regularization method is proposed. Furthermore, we present convergence estimates between the exact solution and the regularized solution by using the a-priori and the a-posteriori parameter choice rules. In order to verify the accuracy and efficiency of the proposed method, several numerical examples are constructed.","PeriodicalId":48811,"journal":{"name":"Journal of Applied Analysis and Computation","volume":"156 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A FRACTIONAL LANDWEBER ITERATION METHOD FOR SIMULTANEOUS INVERSION IN A TIME-FRACTIONAL DIFFUSION EQUATION\",\"authors\":\"Jin Wen, Chong-Wang Yue, Zhuan-Xia Liu, Donal O'Regan\",\"doi\":\"10.11948/20230051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we study the problem to identify the space-dependent source term and initial value simultaneously for a time-fractional diffusion equation. This inverse problem is ill-posed, and we use the idea of decoupling to turn it into two operator equations based on the Fourier method. To solve the inverse problem, a fractional Landweber regularization method is proposed. Furthermore, we present convergence estimates between the exact solution and the regularized solution by using the a-priori and the a-posteriori parameter choice rules. In order to verify the accuracy and efficiency of the proposed method, several numerical examples are constructed.\",\"PeriodicalId\":48811,\"journal\":{\"name\":\"Journal of Applied Analysis and Computation\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Analysis and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11948/20230051\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Analysis and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11948/20230051","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类时间分数扩散方程的源项和初值的同时识别问题。该反问题是病态的,我们利用解耦的思想将其转化为基于傅里叶方法的两个算子方程。为了解决反问题,提出了分数阶Landweber正则化方法。此外,我们利用先验和后验参数选择规则给出了精确解和正则解之间的收敛估计。为了验证所提方法的准确性和有效性,构造了几个数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A FRACTIONAL LANDWEBER ITERATION METHOD FOR SIMULTANEOUS INVERSION IN A TIME-FRACTIONAL DIFFUSION EQUATION
In the present paper, we study the problem to identify the space-dependent source term and initial value simultaneously for a time-fractional diffusion equation. This inverse problem is ill-posed, and we use the idea of decoupling to turn it into two operator equations based on the Fourier method. To solve the inverse problem, a fractional Landweber regularization method is proposed. Furthermore, we present convergence estimates between the exact solution and the regularized solution by using the a-priori and the a-posteriori parameter choice rules. In order to verify the accuracy and efficiency of the proposed method, several numerical examples are constructed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
9.10%
发文量
45
期刊介绍: The Journal of Applied Analysis and Computation (JAAC) is aimed to publish original research papers and survey articles on the theory, scientific computation and application of nonlinear analysis, differential equations and dynamical systems including interdisciplinary research topics on dynamics of mathematical models arising from major areas of science and engineering. The journal is published quarterly in February, April, June, August, October and December by Shanghai Normal University and Wilmington Scientific Publisher, and issued by Shanghai Normal University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信