{"title":"从废弃的泡沫聚苯乙烯中合成活性炭并有效去除水溶液中的镍(II)","authors":"Roopa Dakshinamurthy, Balasundaram Natarajan, Meiaraj Chelladurai","doi":"10.1590/1517-7076-rmat-2023-0195","DOIUrl":null,"url":null,"abstract":"Due to the rapid urbanisation and rapid population explosion, there is a vast essential requirement in the dispose of solid waste. Carbonization of Styrofoam is carried out at varying temperature ranges of 300°C to 675°C at an interval of 75°C using KOH as reagent. The Characterisation of power of hydrogen ion, ash and moisture content, fixed carbon, Volatile matter, iodine adsorption value, methyl blue value was conducted. It was found that the activate carbon obtain from the temperature of 525°C has a good carbon characteristic. The batch experiment such has pH, contact time, carbon dosage, agitation speed, potency of Nickel (II) was conducted with the purpose of ascertaining the efficiency of Nickel (II) adsorption. This analysis deals with fixed bed column to remove Nickel (II) from a solution. The results indicated that the sorption-second order kinetic model was the most appropriate fit for the data, and alternative models such as Adams-Bhorat, Thomas, and Yoon Nelson’s were also evaluated. Increasing a bed height resulted in better removal of Nickel (II) in all 3 models. Therefore, The utilization of Styrofoam-derived activated carbon as a medium for ongoing Nickel (II) adsorption from an aqueous solution.","PeriodicalId":18260,"journal":{"name":"Materia-rio De Janeiro","volume":"34 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesized activated carbon derived from discarded styrofoam and effectively removal of nickel (II) from aqueous solutions\",\"authors\":\"Roopa Dakshinamurthy, Balasundaram Natarajan, Meiaraj Chelladurai\",\"doi\":\"10.1590/1517-7076-rmat-2023-0195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the rapid urbanisation and rapid population explosion, there is a vast essential requirement in the dispose of solid waste. Carbonization of Styrofoam is carried out at varying temperature ranges of 300°C to 675°C at an interval of 75°C using KOH as reagent. The Characterisation of power of hydrogen ion, ash and moisture content, fixed carbon, Volatile matter, iodine adsorption value, methyl blue value was conducted. It was found that the activate carbon obtain from the temperature of 525°C has a good carbon characteristic. The batch experiment such has pH, contact time, carbon dosage, agitation speed, potency of Nickel (II) was conducted with the purpose of ascertaining the efficiency of Nickel (II) adsorption. This analysis deals with fixed bed column to remove Nickel (II) from a solution. The results indicated that the sorption-second order kinetic model was the most appropriate fit for the data, and alternative models such as Adams-Bhorat, Thomas, and Yoon Nelson’s were also evaluated. Increasing a bed height resulted in better removal of Nickel (II) in all 3 models. Therefore, The utilization of Styrofoam-derived activated carbon as a medium for ongoing Nickel (II) adsorption from an aqueous solution.\",\"PeriodicalId\":18260,\"journal\":{\"name\":\"Materia-rio De Janeiro\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materia-rio De Janeiro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1517-7076-rmat-2023-0195\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materia-rio De Janeiro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1517-7076-rmat-2023-0195","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesized activated carbon derived from discarded styrofoam and effectively removal of nickel (II) from aqueous solutions
Due to the rapid urbanisation and rapid population explosion, there is a vast essential requirement in the dispose of solid waste. Carbonization of Styrofoam is carried out at varying temperature ranges of 300°C to 675°C at an interval of 75°C using KOH as reagent. The Characterisation of power of hydrogen ion, ash and moisture content, fixed carbon, Volatile matter, iodine adsorption value, methyl blue value was conducted. It was found that the activate carbon obtain from the temperature of 525°C has a good carbon characteristic. The batch experiment such has pH, contact time, carbon dosage, agitation speed, potency of Nickel (II) was conducted with the purpose of ascertaining the efficiency of Nickel (II) adsorption. This analysis deals with fixed bed column to remove Nickel (II) from a solution. The results indicated that the sorption-second order kinetic model was the most appropriate fit for the data, and alternative models such as Adams-Bhorat, Thomas, and Yoon Nelson’s were also evaluated. Increasing a bed height resulted in better removal of Nickel (II) in all 3 models. Therefore, The utilization of Styrofoam-derived activated carbon as a medium for ongoing Nickel (II) adsorption from an aqueous solution.
期刊介绍:
All the articles are submitted to a careful peer-reviewing evaluation process by the journal''s Editorial Board. The Editorial Board, reviewers and authors make use of a web based proprietary automated tool to deal with the reviewing procedures.the Revista Matéria''s article reviewing restricted access system - SEER. Authors are not informed about the identity of the reviewers.