非规则基上$\mathbb{P}^1$-束的自同构群

IF 1.4 4区 数学 Q1 MATHEMATICS
Tatiana Bandman, Yuri Gennad'evich Zarhin
{"title":"非规则基上$\\mathbb{P}^1$-束的自同构群","authors":"Tatiana Bandman, Yuri Gennad'evich Zarhin","doi":"10.4213/rm10093e","DOIUrl":null,"url":null,"abstract":"In this survey we discuss holomorphic $\\mathbb{P}^1$-bundles $p\\colon X \\to Y$ over a non-uniruled complex compact Kähler manifold $Y$, paying a special attention to the case when $Y$ is a complex torus. We consider the groups $\\operatorname{Aut}(X)$ and $\\operatorname{Bim}(X)$ of its biholomorphic and bimeromorphic automorphisms, respectively, and discuss when these groups are bounded, Jordan, strongly Jordan, or very Jordan. Bibliography: 88 titles.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"8 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automorphism groups of $\\\\mathbb{P}^1$-bundles over a non-uniruled base\",\"authors\":\"Tatiana Bandman, Yuri Gennad'evich Zarhin\",\"doi\":\"10.4213/rm10093e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this survey we discuss holomorphic $\\\\mathbb{P}^1$-bundles $p\\\\colon X \\\\to Y$ over a non-uniruled complex compact Kähler manifold $Y$, paying a special attention to the case when $Y$ is a complex torus. We consider the groups $\\\\operatorname{Aut}(X)$ and $\\\\operatorname{Bim}(X)$ of its biholomorphic and bimeromorphic automorphisms, respectively, and discuss when these groups are bounded, Jordan, strongly Jordan, or very Jordan. Bibliography: 88 titles.\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/rm10093e\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/rm10093e","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了非规则复紧Kähler流形$Y$上的全纯$\mathbb{P}^1$-束$ P \冒号X \到Y$,特别注意了$Y$是复环面的情况。分别考虑其生物全纯自同构和双亚纯自同构的群$\operatorname{Aut}(X)$和$\operatorname{Bim}(X)$,并讨论了这些群何时是有界的、约旦、强约旦和非常约旦。参考书目:88种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automorphism groups of $\mathbb{P}^1$-bundles over a non-uniruled base
In this survey we discuss holomorphic $\mathbb{P}^1$-bundles $p\colon X \to Y$ over a non-uniruled complex compact Kähler manifold $Y$, paying a special attention to the case when $Y$ is a complex torus. We consider the groups $\operatorname{Aut}(X)$ and $\operatorname{Bim}(X)$ of its biholomorphic and bimeromorphic automorphisms, respectively, and discuss when these groups are bounded, Jordan, strongly Jordan, or very Jordan. Bibliography: 88 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信