(m, n)-扶正器有限环的研究

Q4 Mathematics
Tai Chong Chan, Kiat Tat Qua, Denis Chee, Keong Wong
{"title":"(m, n)-扶正器有限环的研究","authors":"Tai Chong Chan, Kiat Tat Qua, Denis Chee, Keong Wong","doi":"10.47743/anstim.2023.00009","DOIUrl":null,"url":null,"abstract":"For any m distinct elements r 1 ,r 2 , ··· ,r m in a ring R , the m -element central-izer of { r 1 ,r 2 , ··· ,r m } in R is defined as C R ( { r 1 ,r 2 , ··· ,r m } ) = { s ∈ R | sr 1 = r 1 s,sr 2 = r 2 s,...,sr m = r m s } , where m ∈ N with m ⩾ 2. We define the set of all distinct m -element centralizers in a ring R by m − Cent( R ), where m ∈ N with m ⩾ 2. Further, R is called ( m,n )-centralizer ring if | m − Cent( R ) | = n , where n ∈ N . In this paper, we characterize some of the ( m,n )-centralizer finite rings for n ⩽ 7.","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on (m, n)-centralizer finite rings\",\"authors\":\"Tai Chong Chan, Kiat Tat Qua, Denis Chee, Keong Wong\",\"doi\":\"10.47743/anstim.2023.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any m distinct elements r 1 ,r 2 , ··· ,r m in a ring R , the m -element central-izer of { r 1 ,r 2 , ··· ,r m } in R is defined as C R ( { r 1 ,r 2 , ··· ,r m } ) = { s ∈ R | sr 1 = r 1 s,sr 2 = r 2 s,...,sr m = r m s } , where m ∈ N with m ⩾ 2. We define the set of all distinct m -element centralizers in a ring R by m − Cent( R ), where m ∈ N with m ⩾ 2. Further, R is called ( m,n )-centralizer ring if | m − Cent( R ) | = n , where n ∈ N . In this paper, we characterize some of the ( m,n )-centralizer finite rings for n ⩽ 7.\",\"PeriodicalId\":55523,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47743/anstim.2023.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47743/anstim.2023.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on (m, n)-centralizer finite rings
For any m distinct elements r 1 ,r 2 , ··· ,r m in a ring R , the m -element central-izer of { r 1 ,r 2 , ··· ,r m } in R is defined as C R ( { r 1 ,r 2 , ··· ,r m } ) = { s ∈ R | sr 1 = r 1 s,sr 2 = r 2 s,...,sr m = r m s } , where m ∈ N with m ⩾ 2. We define the set of all distinct m -element centralizers in a ring R by m − Cent( R ), where m ∈ N with m ⩾ 2. Further, R is called ( m,n )-centralizer ring if | m − Cent( R ) | = n , where n ∈ N . In this paper, we characterize some of the ( m,n )-centralizer finite rings for n ⩽ 7.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信