{"title":"具有对称广义双导的素环的交换性","authors":"Muzibur Rahman Mozumder, Wasim Ahmed, Md. Arshad Madni","doi":"10.47743/anstim.2023.00012","DOIUrl":null,"url":null,"abstract":"In this manuscript we have generalized the result of B. R. Reddy and C. J. S. Reddy [8]. We have taken R to be a prime ring with nonzero ideal I of R and G be a symmetric generalized biderivation of R . We have investigated the commutativity of R if G satisfies any one of the given identities (i) G ([ l,m ] ,n ) ± [ l,m ] = 0, (ii) G ( l ◦ m,n ) ± l ◦ m = 0, (iii) G ( l,m ) ◦ G ( m,n ) = 0, (iv) [ G ( l,m ) , G ( m,n )] = 0, (v) G ( l,m ) ◦ G ( m,n ) ± l ◦ n = 0 and (vi) [ G ( l,m ) , G ( m,n )] ± [ l,n ] = 0 ∀ l,m,n ∈ I .","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutativity of prime rings with symmetric generalized biderivations\",\"authors\":\"Muzibur Rahman Mozumder, Wasim Ahmed, Md. Arshad Madni\",\"doi\":\"10.47743/anstim.2023.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript we have generalized the result of B. R. Reddy and C. J. S. Reddy [8]. We have taken R to be a prime ring with nonzero ideal I of R and G be a symmetric generalized biderivation of R . We have investigated the commutativity of R if G satisfies any one of the given identities (i) G ([ l,m ] ,n ) ± [ l,m ] = 0, (ii) G ( l ◦ m,n ) ± l ◦ m = 0, (iii) G ( l,m ) ◦ G ( m,n ) = 0, (iv) [ G ( l,m ) , G ( m,n )] = 0, (v) G ( l,m ) ◦ G ( m,n ) ± l ◦ n = 0 and (vi) [ G ( l,m ) , G ( m,n )] ± [ l,n ] = 0 ∀ l,m,n ∈ I .\",\"PeriodicalId\":55523,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47743/anstim.2023.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47743/anstim.2023.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Commutativity of prime rings with symmetric generalized biderivations
In this manuscript we have generalized the result of B. R. Reddy and C. J. S. Reddy [8]. We have taken R to be a prime ring with nonzero ideal I of R and G be a symmetric generalized biderivation of R . We have investigated the commutativity of R if G satisfies any one of the given identities (i) G ([ l,m ] ,n ) ± [ l,m ] = 0, (ii) G ( l ◦ m,n ) ± l ◦ m = 0, (iii) G ( l,m ) ◦ G ( m,n ) = 0, (iv) [ G ( l,m ) , G ( m,n )] = 0, (v) G ( l,m ) ◦ G ( m,n ) ± l ◦ n = 0 and (vi) [ G ( l,m ) , G ( m,n )] ± [ l,n ] = 0 ∀ l,m,n ∈ I .
期刊介绍:
This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.