Zefeng Yang, Xuefei Huang, Jie Li, Bo Tang, Guizao Huang, Wenfu Wei, Guangning Wu
{"title":"氧等离子体活化处理改善碳纤维表面胺功能化","authors":"Zefeng Yang, Xuefei Huang, Jie Li, Bo Tang, Guizao Huang, Wenfu Wei, Guangning Wu","doi":"10.1080/09276440.2023.2223407","DOIUrl":null,"url":null,"abstract":"Pretreatment using O2 plasma is a commonly used method today to increase the surface activity of CFs and enable more functional groups to be grafted onto them. Although the oxidation treatment of the CF surface is considered a key procedure for further grafting with functional groups, few researchers have investigated how the oxidation treatment influences the grafting processes. In this paper, the effects of the degree of oxidation on the grafting of amino functional groups onto CFs were experimentally investigated. The experiment showed that the oxidation process developed in steps including initial oxidation, saturation oxidation, and peroxidation. The results demonstrated that the degree of oxidation was positively correlated with the grafting efficiency within a certain range. Furthermore, the groups (unsaturated C, C-OH, and O=C-OH) produced after oxidation determined the results of grafting with amino (C-N, C-NH2, and O=C-NH2) groups. When the O2 plasma treatment time was increased from 0 min to 3 min, the IFSS of CF@HA increased by 1.07 times and the flexural strength of CFRP increased by 1.26 times. This work proves that the ammonia grafting of CF can be controlled by adjusting its earlier oxidation process.","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"176 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved amine functionalization of carbon fiber surfaces by O<sub>2</sub> plasma activation treatment\",\"authors\":\"Zefeng Yang, Xuefei Huang, Jie Li, Bo Tang, Guizao Huang, Wenfu Wei, Guangning Wu\",\"doi\":\"10.1080/09276440.2023.2223407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pretreatment using O2 plasma is a commonly used method today to increase the surface activity of CFs and enable more functional groups to be grafted onto them. Although the oxidation treatment of the CF surface is considered a key procedure for further grafting with functional groups, few researchers have investigated how the oxidation treatment influences the grafting processes. In this paper, the effects of the degree of oxidation on the grafting of amino functional groups onto CFs were experimentally investigated. The experiment showed that the oxidation process developed in steps including initial oxidation, saturation oxidation, and peroxidation. The results demonstrated that the degree of oxidation was positively correlated with the grafting efficiency within a certain range. Furthermore, the groups (unsaturated C, C-OH, and O=C-OH) produced after oxidation determined the results of grafting with amino (C-N, C-NH2, and O=C-NH2) groups. When the O2 plasma treatment time was increased from 0 min to 3 min, the IFSS of CF@HA increased by 1.07 times and the flexural strength of CFRP increased by 1.26 times. This work proves that the ammonia grafting of CF can be controlled by adjusting its earlier oxidation process.\",\"PeriodicalId\":10653,\"journal\":{\"name\":\"Composite Interfaces\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09276440.2023.2223407\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2223407","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Improved amine functionalization of carbon fiber surfaces by O2 plasma activation treatment
Pretreatment using O2 plasma is a commonly used method today to increase the surface activity of CFs and enable more functional groups to be grafted onto them. Although the oxidation treatment of the CF surface is considered a key procedure for further grafting with functional groups, few researchers have investigated how the oxidation treatment influences the grafting processes. In this paper, the effects of the degree of oxidation on the grafting of amino functional groups onto CFs were experimentally investigated. The experiment showed that the oxidation process developed in steps including initial oxidation, saturation oxidation, and peroxidation. The results demonstrated that the degree of oxidation was positively correlated with the grafting efficiency within a certain range. Furthermore, the groups (unsaturated C, C-OH, and O=C-OH) produced after oxidation determined the results of grafting with amino (C-N, C-NH2, and O=C-NH2) groups. When the O2 plasma treatment time was increased from 0 min to 3 min, the IFSS of CF@HA increased by 1.07 times and the flexural strength of CFRP increased by 1.26 times. This work proves that the ammonia grafting of CF can be controlled by adjusting its earlier oxidation process.
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields