{"title":"基于自控电压电平控制器的静态随机存取存储器FinFET电路设计与分析","authors":"VishnuVardhan Rao Gadipudi, A. Kavitha","doi":"10.1166/jno.2023.3470","DOIUrl":null,"url":null,"abstract":"Researchers in the field of device research are always searching for a device that meets certain criteria, such as having low leakage and a low threshold voltage, without sacrificing performance. This pursuit has led to the development of numerous gate architectures. As a result of the enormous size of the static random-access memory (SRAM), its yield and leakage power consumption account for the majority of the chip’s total yield and leakage power consumption respectively. However, as CMOS technology continues to grow in the sub-65 nanometer domain to lower the cost of transistors and the dynamic power, it presents a number of issues on the design of SRAM. In this paper, a 6T SRAM cell with differential write and single ended read operations working in the near-threshold region is proposed. The structure is based on modifying a recently proposed 6T cell which uses high and low VTH transistors to improve the read and write stability. Also, the changes of cell parameters when the temperature rises from 40 °C to 100 °C are investigated. Finally, the write margin as well as the read and hold SNMs of the cell are studied at two supply voltages of 400 mV and 500 mV.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":"46 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Static Random-Access Memory FinFET Circuit Using Self Controlled Voltage Level Controller\",\"authors\":\"VishnuVardhan Rao Gadipudi, A. Kavitha\",\"doi\":\"10.1166/jno.2023.3470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers in the field of device research are always searching for a device that meets certain criteria, such as having low leakage and a low threshold voltage, without sacrificing performance. This pursuit has led to the development of numerous gate architectures. As a result of the enormous size of the static random-access memory (SRAM), its yield and leakage power consumption account for the majority of the chip’s total yield and leakage power consumption respectively. However, as CMOS technology continues to grow in the sub-65 nanometer domain to lower the cost of transistors and the dynamic power, it presents a number of issues on the design of SRAM. In this paper, a 6T SRAM cell with differential write and single ended read operations working in the near-threshold region is proposed. The structure is based on modifying a recently proposed 6T cell which uses high and low VTH transistors to improve the read and write stability. Also, the changes of cell parameters when the temperature rises from 40 °C to 100 °C are investigated. Finally, the write margin as well as the read and hold SNMs of the cell are studied at two supply voltages of 400 mV and 500 mV.\",\"PeriodicalId\":16446,\"journal\":{\"name\":\"Journal of Nanoelectronics and Optoelectronics\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoelectronics and Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jno.2023.3470\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jno.2023.3470","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and Analysis of Static Random-Access Memory FinFET Circuit Using Self Controlled Voltage Level Controller
Researchers in the field of device research are always searching for a device that meets certain criteria, such as having low leakage and a low threshold voltage, without sacrificing performance. This pursuit has led to the development of numerous gate architectures. As a result of the enormous size of the static random-access memory (SRAM), its yield and leakage power consumption account for the majority of the chip’s total yield and leakage power consumption respectively. However, as CMOS technology continues to grow in the sub-65 nanometer domain to lower the cost of transistors and the dynamic power, it presents a number of issues on the design of SRAM. In this paper, a 6T SRAM cell with differential write and single ended read operations working in the near-threshold region is proposed. The structure is based on modifying a recently proposed 6T cell which uses high and low VTH transistors to improve the read and write stability. Also, the changes of cell parameters when the temperature rises from 40 °C to 100 °C are investigated. Finally, the write margin as well as the read and hold SNMs of the cell are studied at two supply voltages of 400 mV and 500 mV.