矩形中硬正方形位形空间的同调性

IF 0.6 3区 数学 Q3 MATHEMATICS
Hannah Alpert, Ulrich Bauer, Matthew Kahle, Robert MacPherson, Kelly Spendlove
{"title":"矩形中硬正方形位形空间的同调性","authors":"Hannah Alpert, Ulrich Bauer, Matthew Kahle, Robert MacPherson, Kelly Spendlove","doi":"10.2140/agt.2023.23.2593","DOIUrl":null,"url":null,"abstract":"We study ordered configuration spaces $C(n;p,q)$ of $n$ hard squares in a $p \\times q$ rectangle, a generalization of the well-known\"15 Puzzle\". Our main interest is in the topology of these spaces. Our first result is to describe a cubical cell complex and prove that is homotopy equivalent to the configuration space. We then focus on determining for which $n$, $j$, $p$, and $q$ the homology group $H_j [ C(n;p,q) ]$ is nontrivial. We prove three homology-vanishing theorems, based on discrete Morse theory on the cell complex. Then we describe several explicit families of nontrivial cycles, and a method for interpolating between parameters to fill in most of the picture for\"large-scale\"nontrivial homology.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"54 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Homology of configuration spaces of hard squares in a rectangle\",\"authors\":\"Hannah Alpert, Ulrich Bauer, Matthew Kahle, Robert MacPherson, Kelly Spendlove\",\"doi\":\"10.2140/agt.2023.23.2593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study ordered configuration spaces $C(n;p,q)$ of $n$ hard squares in a $p \\\\times q$ rectangle, a generalization of the well-known\\\"15 Puzzle\\\". Our main interest is in the topology of these spaces. Our first result is to describe a cubical cell complex and prove that is homotopy equivalent to the configuration space. We then focus on determining for which $n$, $j$, $p$, and $q$ the homology group $H_j [ C(n;p,q) ]$ is nontrivial. We prove three homology-vanishing theorems, based on discrete Morse theory on the cell complex. Then we describe several explicit families of nontrivial cycles, and a method for interpolating between parameters to fill in most of the picture for\\\"large-scale\\\"nontrivial homology.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.2593\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2593","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homology of configuration spaces of hard squares in a rectangle
We study ordered configuration spaces $C(n;p,q)$ of $n$ hard squares in a $p \times q$ rectangle, a generalization of the well-known"15 Puzzle". Our main interest is in the topology of these spaces. Our first result is to describe a cubical cell complex and prove that is homotopy equivalent to the configuration space. We then focus on determining for which $n$, $j$, $p$, and $q$ the homology group $H_j [ C(n;p,q) ]$ is nontrivial. We prove three homology-vanishing theorems, based on discrete Morse theory on the cell complex. Then we describe several explicit families of nontrivial cycles, and a method for interpolating between parameters to fill in most of the picture for"large-scale"nontrivial homology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信