花同调中的不可定向连杆配合与扭转序

IF 0.6 3区 数学 Q3 MATHEMATICS
Sherry Gong, Marco Marengon
{"title":"花同调中的不可定向连杆配合与扭转序","authors":"Sherry Gong, Marco Marengon","doi":"10.2140/agt.2023.23.2627","DOIUrl":null,"url":null,"abstract":"We use unoriented versions of instanton and knot Floer homology to prove inequalities involving the Euler characteristic and the number of local maxima appearing in unorientable cobordisms, which mirror results of a recent paper by Juhasz, Miller, and Zemke concerning orientable cobordisms. Most of the subtlety in our argument lies in the fact that maps for non-orientable cobordisms require more complicated decorations than their orientable counterparts. We introduce unoriented versions of the band unknotting number and the refined cobordism distance and apply our results to give bounds on these based on the torsion orders of the Floer homologies. Finally, we show that the difference between the unoriented refined cobordism distance of a knot $K$ from the unknot and the non-orientable slice genus of $K$ can be arbitrarily large.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"86 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nonorientable link cobordisms and torsion order in Floer homologies\",\"authors\":\"Sherry Gong, Marco Marengon\",\"doi\":\"10.2140/agt.2023.23.2627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use unoriented versions of instanton and knot Floer homology to prove inequalities involving the Euler characteristic and the number of local maxima appearing in unorientable cobordisms, which mirror results of a recent paper by Juhasz, Miller, and Zemke concerning orientable cobordisms. Most of the subtlety in our argument lies in the fact that maps for non-orientable cobordisms require more complicated decorations than their orientable counterparts. We introduce unoriented versions of the band unknotting number and the refined cobordism distance and apply our results to give bounds on these based on the torsion orders of the Floer homologies. Finally, we show that the difference between the unoriented refined cobordism distance of a knot $K$ from the unknot and the non-orientable slice genus of $K$ can be arbitrarily large.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.2627\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2627","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonorientable link cobordisms and torsion order in Floer homologies
We use unoriented versions of instanton and knot Floer homology to prove inequalities involving the Euler characteristic and the number of local maxima appearing in unorientable cobordisms, which mirror results of a recent paper by Juhasz, Miller, and Zemke concerning orientable cobordisms. Most of the subtlety in our argument lies in the fact that maps for non-orientable cobordisms require more complicated decorations than their orientable counterparts. We introduce unoriented versions of the band unknotting number and the refined cobordism distance and apply our results to give bounds on these based on the torsion orders of the Floer homologies. Finally, we show that the difference between the unoriented refined cobordism distance of a knot $K$ from the unknot and the non-orientable slice genus of $K$ can be arbitrarily large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信