{"title":"部分组合代数之间的嵌入","authors":"Anton Golov, Sebastiaan A. Terwijn","doi":"10.1215/00294527-2023-0002","DOIUrl":null,"url":null,"abstract":"Partial combinatory algebras (pcas) are algebraic structures that serve as generalized models of computation. In this article, we study embeddings of pcas. In particular, we systematize the embeddings between relativizations of Kleene’s models, of van Oosten’s sequential computation model, and of Scott’s graph model, showing that an embedding between two relativized models exists if and only if there exists a particular reduction between the oracles. We obtain a similar result for the lambda calculus, showing in particular that it cannot be embedded in Kleene’s first model.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":"3 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embeddings between Partial Combinatory Algebras\",\"authors\":\"Anton Golov, Sebastiaan A. Terwijn\",\"doi\":\"10.1215/00294527-2023-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial combinatory algebras (pcas) are algebraic structures that serve as generalized models of computation. In this article, we study embeddings of pcas. In particular, we systematize the embeddings between relativizations of Kleene’s models, of van Oosten’s sequential computation model, and of Scott’s graph model, showing that an embedding between two relativized models exists if and only if there exists a particular reduction between the oracles. We obtain a similar result for the lambda calculus, showing in particular that it cannot be embedded in Kleene’s first model.\",\"PeriodicalId\":51259,\"journal\":{\"name\":\"Notre Dame Journal of Formal Logic\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notre Dame Journal of Formal Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00294527-2023-0002\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notre Dame Journal of Formal Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00294527-2023-0002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
Partial combinatory algebras (pcas) are algebraic structures that serve as generalized models of computation. In this article, we study embeddings of pcas. In particular, we systematize the embeddings between relativizations of Kleene’s models, of van Oosten’s sequential computation model, and of Scott’s graph model, showing that an embedding between two relativized models exists if and only if there exists a particular reduction between the oracles. We obtain a similar result for the lambda calculus, showing in particular that it cannot be embedded in Kleene’s first model.
期刊介绍:
The Notre Dame Journal of Formal Logic, founded in 1960, aims to publish high quality and original research papers in philosophical logic, mathematical logic, and related areas, including papers of compelling historical interest. The Journal is also willing to selectively publish expository articles on important current topics of interest as well as book reviews.