Chao Xu, Zhenxing Dong, Shuyi Chen, Yan Li, Yuye Ling, Yikai Su
{"title":"76‐3:用于高保真计算机生成全息的改进无监督视觉变压器网络","authors":"Chao Xu, Zhenxing Dong, Shuyi Chen, Yan Li, Yuye Ling, Yikai Su","doi":"10.1002/sdtp.16758","DOIUrl":null,"url":null,"abstract":"To generate high quality images with faster calculation speed for holographic displays, we propose a modified unsupervised Vision Transformer model, which has the capability of capturing global features of an image. The proposed method can infer a hologram significantly faster than the stochastic gradient descent method, while producing images with similar quality.","PeriodicalId":21706,"journal":{"name":"SID Symposium Digest of Technical Papers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"76‐3: A Modified Unsupervised Vision Transformer Network for High‐fidelity Computer‐generated Holography\",\"authors\":\"Chao Xu, Zhenxing Dong, Shuyi Chen, Yan Li, Yuye Ling, Yikai Su\",\"doi\":\"10.1002/sdtp.16758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To generate high quality images with faster calculation speed for holographic displays, we propose a modified unsupervised Vision Transformer model, which has the capability of capturing global features of an image. The proposed method can infer a hologram significantly faster than the stochastic gradient descent method, while producing images with similar quality.\",\"PeriodicalId\":21706,\"journal\":{\"name\":\"SID Symposium Digest of Technical Papers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SID Symposium Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sdtp.16758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SID Symposium Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sdtp.16758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
76‐3: A Modified Unsupervised Vision Transformer Network for High‐fidelity Computer‐generated Holography
To generate high quality images with faster calculation speed for holographic displays, we propose a modified unsupervised Vision Transformer model, which has the capability of capturing global features of an image. The proposed method can infer a hologram significantly faster than the stochastic gradient descent method, while producing images with similar quality.