{"title":"页岩气井产能评价方法综述","authors":"Yize Huang, Xizhe Li, Xiaohua Liu, Yujia Zhai, Feifei Fang, Wei Guo, Chao Qian, Lingling Han, Yue Cui, Yuze Jia","doi":"10.1007/s13202-023-01698-z","DOIUrl":null,"url":null,"abstract":"Abstract The influence of geological and engineering factors results in the complex production characteristics of shale gas wells. The productivity evaluation method is effective to analyze the production decline law and estimate the ultimate recovery in the shale gas reservoir. This paper reviews the production decline method, analytical method, numerical simulation method, and machine learning method. which analyzes the applicable conditions, basic principles, characteristics, and limitations of different methods. The research found that the production decline method can mainly account for the gas well production and pressure data by fitting type curve analysis. The analytical method is able to couple multiple transport mechanisms and quantify the impact of different mechanisms on shale gas well productivity. Numerical simulation builds multiple pore media in shale gas reservoirs and performs production dynamics as well as capacity prediction visually. Machine learning methods are a nascent approach that can efficiently use available production data from shale gas wells to predict productivity. Finally, the research discusses the future directions and challenges of shale gas well productivity evaluation methods.","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"49 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of the productivity evaluation methods for shale gas wells\",\"authors\":\"Yize Huang, Xizhe Li, Xiaohua Liu, Yujia Zhai, Feifei Fang, Wei Guo, Chao Qian, Lingling Han, Yue Cui, Yuze Jia\",\"doi\":\"10.1007/s13202-023-01698-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The influence of geological and engineering factors results in the complex production characteristics of shale gas wells. The productivity evaluation method is effective to analyze the production decline law and estimate the ultimate recovery in the shale gas reservoir. This paper reviews the production decline method, analytical method, numerical simulation method, and machine learning method. which analyzes the applicable conditions, basic principles, characteristics, and limitations of different methods. The research found that the production decline method can mainly account for the gas well production and pressure data by fitting type curve analysis. The analytical method is able to couple multiple transport mechanisms and quantify the impact of different mechanisms on shale gas well productivity. Numerical simulation builds multiple pore media in shale gas reservoirs and performs production dynamics as well as capacity prediction visually. Machine learning methods are a nascent approach that can efficiently use available production data from shale gas wells to predict productivity. Finally, the research discusses the future directions and challenges of shale gas well productivity evaluation methods.\",\"PeriodicalId\":16723,\"journal\":{\"name\":\"Journal of Petroleum Exploration and Production Technology\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Exploration and Production Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13202-023-01698-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13202-023-01698-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Review of the productivity evaluation methods for shale gas wells
Abstract The influence of geological and engineering factors results in the complex production characteristics of shale gas wells. The productivity evaluation method is effective to analyze the production decline law and estimate the ultimate recovery in the shale gas reservoir. This paper reviews the production decline method, analytical method, numerical simulation method, and machine learning method. which analyzes the applicable conditions, basic principles, characteristics, and limitations of different methods. The research found that the production decline method can mainly account for the gas well production and pressure data by fitting type curve analysis. The analytical method is able to couple multiple transport mechanisms and quantify the impact of different mechanisms on shale gas well productivity. Numerical simulation builds multiple pore media in shale gas reservoirs and performs production dynamics as well as capacity prediction visually. Machine learning methods are a nascent approach that can efficiently use available production data from shale gas wells to predict productivity. Finally, the research discusses the future directions and challenges of shale gas well productivity evaluation methods.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies