{"title":"利用季节观测的冰川物质平衡的时间降尺度","authors":"Michael Zemp, Ethan Welty","doi":"10.1017/jog.2023.66","DOIUrl":null,"url":null,"abstract":"Abstract Glaciological mass-balance measurements have been the backbone of internationally coordinated glacier monitoring. The resulting annual observations have been used to understand glacier reactions to climate change, and to assess both regional and global glacier mass changes and related contributions to runoff and sea-level rise. However, the comparability of annual observations is hampered by differences in survey periods and mass-balance amplitudes between glaciers, regions and hemispheres. This study presents a simple approach to temporally downscale glaciological mass balance using seasonal observations and sine functions. The proposed analytical model allows reconstruction of the seasonal course of glacier mass balance at weekly to monthly resolution from only annual or seasonal observations. Strengths and limitations of this analytical approach are discussed and compared with results from numerical mass-balance modelling. Potential applications include seasonal corrections of glaciological and geodetic observations and comparisons to monthly results from spaceborne gravimetry and altimetry.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"13 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal downscaling of glaciological mass balance using seasonal observations\",\"authors\":\"Michael Zemp, Ethan Welty\",\"doi\":\"10.1017/jog.2023.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Glaciological mass-balance measurements have been the backbone of internationally coordinated glacier monitoring. The resulting annual observations have been used to understand glacier reactions to climate change, and to assess both regional and global glacier mass changes and related contributions to runoff and sea-level rise. However, the comparability of annual observations is hampered by differences in survey periods and mass-balance amplitudes between glaciers, regions and hemispheres. This study presents a simple approach to temporally downscale glaciological mass balance using seasonal observations and sine functions. The proposed analytical model allows reconstruction of the seasonal course of glacier mass balance at weekly to monthly resolution from only annual or seasonal observations. Strengths and limitations of this analytical approach are discussed and compared with results from numerical mass-balance modelling. Potential applications include seasonal corrections of glaciological and geodetic observations and comparisons to monthly results from spaceborne gravimetry and altimetry.\",\"PeriodicalId\":15981,\"journal\":{\"name\":\"Journal of Glaciology\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Glaciology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jog.2023.66\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jog.2023.66","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Temporal downscaling of glaciological mass balance using seasonal observations
Abstract Glaciological mass-balance measurements have been the backbone of internationally coordinated glacier monitoring. The resulting annual observations have been used to understand glacier reactions to climate change, and to assess both regional and global glacier mass changes and related contributions to runoff and sea-level rise. However, the comparability of annual observations is hampered by differences in survey periods and mass-balance amplitudes between glaciers, regions and hemispheres. This study presents a simple approach to temporally downscale glaciological mass balance using seasonal observations and sine functions. The proposed analytical model allows reconstruction of the seasonal course of glacier mass balance at weekly to monthly resolution from only annual or seasonal observations. Strengths and limitations of this analytical approach are discussed and compared with results from numerical mass-balance modelling. Potential applications include seasonal corrections of glaciological and geodetic observations and comparisons to monthly results from spaceborne gravimetry and altimetry.
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.