群扩展的玻尔紧化与无限补全

IF 0.6 3区 数学 Q3 MATHEMATICS
BACHIR BEKKA
{"title":"群扩展的玻尔紧化与无限补全","authors":"BACHIR BEKKA","doi":"10.1017/s0305004123000555","DOIUrl":null,"url":null,"abstract":"Abstract Let $G= N\\rtimes H$ be a locally compact group which is a semi-direct product of a closed normal subgroup N and a closed subgroup H . The Bohr compactification ${\\rm Bohr}(G)$ and the profinite completion ${\\rm Prof}(G)$ of G are, respectively, isomorphic to semi-direct products $Q_1 \\rtimes {\\rm Bohr}(H)$ and $Q_2 \\rtimes {\\rm Prof}(H)$ for appropriate quotients $Q_1$ of ${\\rm Bohr}(N)$ and $Q_2$ of ${\\rm Prof}(N).$ We give a precise description of $Q_1$ and $Q_2$ in terms of the action of H on appropriate subsets of the dual space of N . In the case where N is abelian, we have ${\\rm Bohr}(G)\\cong A \\rtimes {\\rm Bohr}(H)$ and ${\\rm Prof}(G)\\cong B \\rtimes {\\rm Prof}(H),$ where A (respectively B ) is the dual group of the group of unitary characters of N with finite H -orbits (respectively with finite image). Necessary and sufficient conditions are deduced for G to be maximally almost periodic or residually finite. We apply the results to the case where $G= \\Lambda\\wr H$ is a wreath product of discrete groups; we show in particular that, in case H is infinite, ${\\rm Bohr}(\\Lambda\\wr H)$ is isomorphic to ${\\rm Bohr}(\\Lambda^{\\rm Ab}\\wr H)$ and ${\\rm Prof}(\\Lambda\\wr H)$ is isomorphic to ${\\rm Prof}(\\Lambda^{\\rm Ab} \\wr H),$ where $\\Lambda^{\\rm Ab}=\\Lambda/ [\\Lambda, \\Lambda]$ is the abelianisation of $\\Lambda.$ As examples, we compute ${\\rm Bohr}(G)$ and ${\\rm Prof}(G)$ when G is a lamplighter group and when G is the Heisenberg group over a unital commutative ring.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"94 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Bohr compactifications and profinite completions of group extensions\",\"authors\":\"BACHIR BEKKA\",\"doi\":\"10.1017/s0305004123000555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $G= N\\\\rtimes H$ be a locally compact group which is a semi-direct product of a closed normal subgroup N and a closed subgroup H . The Bohr compactification ${\\\\rm Bohr}(G)$ and the profinite completion ${\\\\rm Prof}(G)$ of G are, respectively, isomorphic to semi-direct products $Q_1 \\\\rtimes {\\\\rm Bohr}(H)$ and $Q_2 \\\\rtimes {\\\\rm Prof}(H)$ for appropriate quotients $Q_1$ of ${\\\\rm Bohr}(N)$ and $Q_2$ of ${\\\\rm Prof}(N).$ We give a precise description of $Q_1$ and $Q_2$ in terms of the action of H on appropriate subsets of the dual space of N . In the case where N is abelian, we have ${\\\\rm Bohr}(G)\\\\cong A \\\\rtimes {\\\\rm Bohr}(H)$ and ${\\\\rm Prof}(G)\\\\cong B \\\\rtimes {\\\\rm Prof}(H),$ where A (respectively B ) is the dual group of the group of unitary characters of N with finite H -orbits (respectively with finite image). Necessary and sufficient conditions are deduced for G to be maximally almost periodic or residually finite. We apply the results to the case where $G= \\\\Lambda\\\\wr H$ is a wreath product of discrete groups; we show in particular that, in case H is infinite, ${\\\\rm Bohr}(\\\\Lambda\\\\wr H)$ is isomorphic to ${\\\\rm Bohr}(\\\\Lambda^{\\\\rm Ab}\\\\wr H)$ and ${\\\\rm Prof}(\\\\Lambda\\\\wr H)$ is isomorphic to ${\\\\rm Prof}(\\\\Lambda^{\\\\rm Ab} \\\\wr H),$ where $\\\\Lambda^{\\\\rm Ab}=\\\\Lambda/ [\\\\Lambda, \\\\Lambda]$ is the abelianisation of $\\\\Lambda.$ As examples, we compute ${\\\\rm Bohr}(G)$ and ${\\\\rm Prof}(G)$ when G is a lamplighter group and when G is the Heisenberg group over a unital commutative ring.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004123000555\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0305004123000555","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

抽象Let $G= N\rtimes H$ 是闭正规子群N与闭子群H的半直积的局部紧群。玻尔紧化 ${\rm Bohr}(G)$ 和无限的完成 ${\rm Prof}(G)$ 分别是半直积的同构 $Q_1 \rtimes {\rm Bohr}(H)$ 和 $Q_2 \rtimes {\rm Prof}(H)$ 求合适的商 $Q_1$ 的 ${\rm Bohr}(N)$ 和 $Q_2$ 的 ${\rm Prof}(N).$ 我们对……作了精确的描述 $Q_1$ 和 $Q_2$ 关于H对N的对偶空间的适当子集的作用。在N是阿贝尔的情况下,我们有 ${\rm Bohr}(G)\cong A \rtimes {\rm Bohr}(H)$ 和 ${\rm Prof}(G)\cong B \rtimes {\rm Prof}(H),$ 其中A(分别为B)是有限H轨道(分别为有限像)N的酉元群的对偶群。导出了G是最大概周期或剩余有限的充分必要条件。我们将结果应用于 $G= \Lambda\wr H$ 是离散群的环积;我们特别指出,当H是无穷大时, ${\rm Bohr}(\Lambda\wr H)$ 是同构的 ${\rm Bohr}(\Lambda^{\rm Ab}\wr H)$ 和 ${\rm Prof}(\Lambda\wr H)$ 是同构的 ${\rm Prof}(\Lambda^{\rm Ab} \wr H),$ 在哪里 $\Lambda^{\rm Ab}=\Lambda/ [\Lambda, \Lambda]$ 阿贝尔化是 $\Lambda.$ 作为例子,我们计算 ${\rm Bohr}(G)$ 和 ${\rm Prof}(G)$ 当G是点灯群和G是单位交换环上的海森堡群时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Bohr compactifications and profinite completions of group extensions
Abstract Let $G= N\rtimes H$ be a locally compact group which is a semi-direct product of a closed normal subgroup N and a closed subgroup H . The Bohr compactification ${\rm Bohr}(G)$ and the profinite completion ${\rm Prof}(G)$ of G are, respectively, isomorphic to semi-direct products $Q_1 \rtimes {\rm Bohr}(H)$ and $Q_2 \rtimes {\rm Prof}(H)$ for appropriate quotients $Q_1$ of ${\rm Bohr}(N)$ and $Q_2$ of ${\rm Prof}(N).$ We give a precise description of $Q_1$ and $Q_2$ in terms of the action of H on appropriate subsets of the dual space of N . In the case where N is abelian, we have ${\rm Bohr}(G)\cong A \rtimes {\rm Bohr}(H)$ and ${\rm Prof}(G)\cong B \rtimes {\rm Prof}(H),$ where A (respectively B ) is the dual group of the group of unitary characters of N with finite H -orbits (respectively with finite image). Necessary and sufficient conditions are deduced for G to be maximally almost periodic or residually finite. We apply the results to the case where $G= \Lambda\wr H$ is a wreath product of discrete groups; we show in particular that, in case H is infinite, ${\rm Bohr}(\Lambda\wr H)$ is isomorphic to ${\rm Bohr}(\Lambda^{\rm Ab}\wr H)$ and ${\rm Prof}(\Lambda\wr H)$ is isomorphic to ${\rm Prof}(\Lambda^{\rm Ab} \wr H),$ where $\Lambda^{\rm Ab}=\Lambda/ [\Lambda, \Lambda]$ is the abelianisation of $\Lambda.$ As examples, we compute ${\rm Bohr}(G)$ and ${\rm Prof}(G)$ when G is a lamplighter group and when G is the Heisenberg group over a unital commutative ring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信