Tessa M. Shates, Marco Gebiola, Penglin Sun, Amani Helo, Oaksoe Aung, Jaimie Kenney, Carolyn Malmstrom, Kerry E. Mauck
{"title":"在自然植物残群中普遍存在的非本地植物病毒对本地多年生寄主造成危害","authors":"Tessa M. Shates, Marco Gebiola, Penglin Sun, Amani Helo, Oaksoe Aung, Jaimie Kenney, Carolyn Malmstrom, Kerry E. Mauck","doi":"10.1094/pbiomes-05-23-0033-r","DOIUrl":null,"url":null,"abstract":"Plant viruses are ubiquitous throughout plant communities, but research on viral impacts largely focuses on crops. Little is known about how viruses influence wild plants in their native habitats. To address this gap, we examined virus interactions with wild drought-tolerant perennials in California desert natural areas encroached upon by agriculture. We used metagenomics, targeted diagnostics, and phylogenetics to assess virus diversity and clade relationships, and experiments to investigate viral influence on hosts. We focused on three herbaceous perennials (Cucurbita foetidissima, Cucurbita palmata, and Datura wrightii) and tested the hypothesis that these wild species accumulate virus infections typically found in crops and transmitted by polyphagous insects. We predicted that such infections might be retained across seasons and potentially impair plant performance. Virome profiling revealed a rich community of previously-characterized virus species (12 total), with virus community structure varying by site and host species. The dominant viruses in the wild hosts were non-native crop pathogens, including cucurbit aphid-borne yellows virus (CABYV) and cucurbit yellow stunting disorder virus (CYSDV). Targeted testing revealed that CABYV infected as many as 88% of sampled wild Cucurbita individuals, with dual CABYV-CYSDV infections common in natural areas adjacent to desert agriculture. CABYV infections reduced shoot and root production in greenhouse experiments with the two wild Cucurbita species. Phylogenetic analyses suggest that CABYV was introduced to California multiple times from other continents. Our findings provide concerning evidence of ways in which human activities can alter virus pressure on wild plants and potentially contribute to plant decline.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-native plant viruses prevalent in remnant natural plant communities harm native perennial hosts\",\"authors\":\"Tessa M. Shates, Marco Gebiola, Penglin Sun, Amani Helo, Oaksoe Aung, Jaimie Kenney, Carolyn Malmstrom, Kerry E. Mauck\",\"doi\":\"10.1094/pbiomes-05-23-0033-r\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant viruses are ubiquitous throughout plant communities, but research on viral impacts largely focuses on crops. Little is known about how viruses influence wild plants in their native habitats. To address this gap, we examined virus interactions with wild drought-tolerant perennials in California desert natural areas encroached upon by agriculture. We used metagenomics, targeted diagnostics, and phylogenetics to assess virus diversity and clade relationships, and experiments to investigate viral influence on hosts. We focused on three herbaceous perennials (Cucurbita foetidissima, Cucurbita palmata, and Datura wrightii) and tested the hypothesis that these wild species accumulate virus infections typically found in crops and transmitted by polyphagous insects. We predicted that such infections might be retained across seasons and potentially impair plant performance. Virome profiling revealed a rich community of previously-characterized virus species (12 total), with virus community structure varying by site and host species. The dominant viruses in the wild hosts were non-native crop pathogens, including cucurbit aphid-borne yellows virus (CABYV) and cucurbit yellow stunting disorder virus (CYSDV). Targeted testing revealed that CABYV infected as many as 88% of sampled wild Cucurbita individuals, with dual CABYV-CYSDV infections common in natural areas adjacent to desert agriculture. CABYV infections reduced shoot and root production in greenhouse experiments with the two wild Cucurbita species. Phylogenetic analyses suggest that CABYV was introduced to California multiple times from other continents. Our findings provide concerning evidence of ways in which human activities can alter virus pressure on wild plants and potentially contribute to plant decline.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1094/pbiomes-05-23-0033-r\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1094/pbiomes-05-23-0033-r","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Plant viruses are ubiquitous throughout plant communities, but research on viral impacts largely focuses on crops. Little is known about how viruses influence wild plants in their native habitats. To address this gap, we examined virus interactions with wild drought-tolerant perennials in California desert natural areas encroached upon by agriculture. We used metagenomics, targeted diagnostics, and phylogenetics to assess virus diversity and clade relationships, and experiments to investigate viral influence on hosts. We focused on three herbaceous perennials (Cucurbita foetidissima, Cucurbita palmata, and Datura wrightii) and tested the hypothesis that these wild species accumulate virus infections typically found in crops and transmitted by polyphagous insects. We predicted that such infections might be retained across seasons and potentially impair plant performance. Virome profiling revealed a rich community of previously-characterized virus species (12 total), with virus community structure varying by site and host species. The dominant viruses in the wild hosts were non-native crop pathogens, including cucurbit aphid-borne yellows virus (CABYV) and cucurbit yellow stunting disorder virus (CYSDV). Targeted testing revealed that CABYV infected as many as 88% of sampled wild Cucurbita individuals, with dual CABYV-CYSDV infections common in natural areas adjacent to desert agriculture. CABYV infections reduced shoot and root production in greenhouse experiments with the two wild Cucurbita species. Phylogenetic analyses suggest that CABYV was introduced to California multiple times from other continents. Our findings provide concerning evidence of ways in which human activities can alter virus pressure on wild plants and potentially contribute to plant decline.