基于贝叶斯格滤波器的计算高效泊松时变自回归模型

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2023-10-09 DOI:10.3390/stats6040065
Yuelei Sui, Scott H. Holan, Wen-Hsi Yang
{"title":"基于贝叶斯格滤波器的计算高效泊松时变自回归模型","authors":"Yuelei Sui, Scott H. Holan, Wen-Hsi Yang","doi":"10.3390/stats6040065","DOIUrl":null,"url":null,"abstract":"Estimation of time-varying autoregressive models for count-valued time series can be computationally challenging. In this direction, we propose a time-varying Poisson autoregressive (TV-Pois-AR) model that accounts for the changing intensity of the Poisson process. Our approach can capture the latent dynamics of the time series and therefore make superior forecasts. To speed up the estimation of the TV-AR process, our approach uses the Bayesian Lattice Filter. In addition, the No-U-Turn Sampler (NUTS) is used, instead of a random walk Metropolis–Hastings algorithm, to sample intensity-related parameters without a closed-form full conditional distribution. The effectiveness of our approach is evaluated through model-based and empirical simulation studies. Finally, we demonstrate the utility of the proposed model through an example of COVID-19 spread in New York State and an example of US COVID-19 hospitalization data.","PeriodicalId":93142,"journal":{"name":"Stats","volume":"47 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computationally Efficient Poisson Time-Varying Autoregressive Models through Bayesian Lattice Filters\",\"authors\":\"Yuelei Sui, Scott H. Holan, Wen-Hsi Yang\",\"doi\":\"10.3390/stats6040065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of time-varying autoregressive models for count-valued time series can be computationally challenging. In this direction, we propose a time-varying Poisson autoregressive (TV-Pois-AR) model that accounts for the changing intensity of the Poisson process. Our approach can capture the latent dynamics of the time series and therefore make superior forecasts. To speed up the estimation of the TV-AR process, our approach uses the Bayesian Lattice Filter. In addition, the No-U-Turn Sampler (NUTS) is used, instead of a random walk Metropolis–Hastings algorithm, to sample intensity-related parameters without a closed-form full conditional distribution. The effectiveness of our approach is evaluated through model-based and empirical simulation studies. Finally, we demonstrate the utility of the proposed model through an example of COVID-19 spread in New York State and an example of US COVID-19 hospitalization data.\",\"PeriodicalId\":93142,\"journal\":{\"name\":\"Stats\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stats\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats6040065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6040065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

对计数时间序列的时变自回归模型的估计在计算上具有挑战性。在这个方向上,我们提出了一个时变泊松自回归(tv -泊松- ar)模型来解释泊松过程的强度变化。我们的方法可以捕捉到时间序列的潜在动态,因此可以做出更好的预测。为了加速TV-AR过程的估计,我们的方法使用贝叶斯点阵滤波器。此外,使用无掉头采样器(NUTS)代替随机游走Metropolis-Hastings算法,对强度相关参数进行采样,不需要封闭形式的全条件分布。我们的方法的有效性通过基于模型和实证模拟研究进行评估。最后,我们通过一个COVID-19在纽约州传播的例子和一个美国COVID-19住院数据的例子来证明所提出模型的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computationally Efficient Poisson Time-Varying Autoregressive Models through Bayesian Lattice Filters
Estimation of time-varying autoregressive models for count-valued time series can be computationally challenging. In this direction, we propose a time-varying Poisson autoregressive (TV-Pois-AR) model that accounts for the changing intensity of the Poisson process. Our approach can capture the latent dynamics of the time series and therefore make superior forecasts. To speed up the estimation of the TV-AR process, our approach uses the Bayesian Lattice Filter. In addition, the No-U-Turn Sampler (NUTS) is used, instead of a random walk Metropolis–Hastings algorithm, to sample intensity-related parameters without a closed-form full conditional distribution. The effectiveness of our approach is evaluated through model-based and empirical simulation studies. Finally, we demonstrate the utility of the proposed model through an example of COVID-19 spread in New York State and an example of US COVID-19 hospitalization data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信