Soumili Ghosh, Mahendra Kumar Gourisaria, Biswajit Sahoo, Himansu Das
{"title":"一种实用的降雨预测集成学习方法","authors":"Soumili Ghosh, Mahendra Kumar Gourisaria, Biswajit Sahoo, Himansu Das","doi":"10.1007/s43926-023-00044-3","DOIUrl":null,"url":null,"abstract":"Abstract Heavy rainfall and precipitation play a massive role in shaping the socio-agricultural landscape of a country. Being one of the key indicators of climate change, natural disasters, and of the general topology of a region, rainfall prediction is a gift of estimation that can be used for multiple beneficial causes. Machine learning has an impressive repertoire in aiding prediction and estimation of rainfall. This paper aims to find the effect of ensemble learning, a subset of machine learning, on a rainfall prediction dataset, to increase the predictability of the models used. The classification models used in this paper were tested once individually, and then with applied ensemble techniques like bagging and boosting, on a rainfall dataset based in Australia. The objective of this paper is to demonstrate a reduction in bias and variance via ensemble learning techniques while also analyzing the increase or decrease in the aforementioned metrics. The study shows an overall reduction in bias by an average of 6% using boosting, and an average reduction in variance by 13.6%. Model performance was observed to become more generalized by lowering the false negative rate by an average of more than 20%. The techniques explored in this paper can be further utilized to improve model performance even further via hyper-parameter tuning.","PeriodicalId":34751,"journal":{"name":"Discover Internet of Things","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pragmatic ensemble learning approach for rainfall prediction\",\"authors\":\"Soumili Ghosh, Mahendra Kumar Gourisaria, Biswajit Sahoo, Himansu Das\",\"doi\":\"10.1007/s43926-023-00044-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Heavy rainfall and precipitation play a massive role in shaping the socio-agricultural landscape of a country. Being one of the key indicators of climate change, natural disasters, and of the general topology of a region, rainfall prediction is a gift of estimation that can be used for multiple beneficial causes. Machine learning has an impressive repertoire in aiding prediction and estimation of rainfall. This paper aims to find the effect of ensemble learning, a subset of machine learning, on a rainfall prediction dataset, to increase the predictability of the models used. The classification models used in this paper were tested once individually, and then with applied ensemble techniques like bagging and boosting, on a rainfall dataset based in Australia. The objective of this paper is to demonstrate a reduction in bias and variance via ensemble learning techniques while also analyzing the increase or decrease in the aforementioned metrics. The study shows an overall reduction in bias by an average of 6% using boosting, and an average reduction in variance by 13.6%. Model performance was observed to become more generalized by lowering the false negative rate by an average of more than 20%. The techniques explored in this paper can be further utilized to improve model performance even further via hyper-parameter tuning.\",\"PeriodicalId\":34751,\"journal\":{\"name\":\"Discover Internet of Things\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43926-023-00044-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43926-023-00044-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A pragmatic ensemble learning approach for rainfall prediction
Abstract Heavy rainfall and precipitation play a massive role in shaping the socio-agricultural landscape of a country. Being one of the key indicators of climate change, natural disasters, and of the general topology of a region, rainfall prediction is a gift of estimation that can be used for multiple beneficial causes. Machine learning has an impressive repertoire in aiding prediction and estimation of rainfall. This paper aims to find the effect of ensemble learning, a subset of machine learning, on a rainfall prediction dataset, to increase the predictability of the models used. The classification models used in this paper were tested once individually, and then with applied ensemble techniques like bagging and boosting, on a rainfall dataset based in Australia. The objective of this paper is to demonstrate a reduction in bias and variance via ensemble learning techniques while also analyzing the increase or decrease in the aforementioned metrics. The study shows an overall reduction in bias by an average of 6% using boosting, and an average reduction in variance by 13.6%. Model performance was observed to become more generalized by lowering the false negative rate by an average of more than 20%. The techniques explored in this paper can be further utilized to improve model performance even further via hyper-parameter tuning.
期刊介绍:
Discover Internet of Things is part of the Discover journal series committed to providing a streamlined submission process, rapid review and publication, and a high level of author service at every stage. It is an open access, community-focussed journal publishing research from across all fields relevant to the Internet of Things (IoT), providing cutting-edge and state-of-art research findings to researchers, academicians, students, and engineers.
Discover Internet of Things is a broad, open access journal publishing research from across all fields relevant to IoT. Discover Internet of Things covers concepts at the component, hardware, and system level as well as programming, operating systems, software, applications and other technology-oriented research topics. The journal is uniquely interdisciplinary because its scope spans several research communities, ranging from computer systems to communication, optimisation, big data analytics, and application. It is also intended that articles published in Discover Internet of Things may help to support and accelerate Sustainable Development Goal 9: ‘Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation’.
Discover Internet of Things welcomes all observational, experimental, theoretical, analytical, mathematical modelling, data-driven, and applied approaches that advance the study of all aspects of IoT research.