侧向约束对颗粒碎屑引起的波浪产生和衰减的影响

IF 1.7 3区 工程技术 Q3 ENGINEERING, CIVIL
Yu-Xiang Hu, Xing-Yu Long, Hai-Bo Li, Cong-Jiang Li, Jia-Wen Zhou
{"title":"侧向约束对颗粒碎屑引起的波浪产生和衰减的影响","authors":"Yu-Xiang Hu, Xing-Yu Long, Hai-Bo Li, Cong-Jiang Li, Jia-Wen Zhou","doi":"10.1080/00221686.2023.2255848","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe lateral confinement effect significantly influences wave amplitude at the generation and propagation stage. A series of physical experiments and numerical simulations considering different parameters was conducted to study the effect of lateral confinement on waves, and the enlargement percentage from lateral confinement on the maximum wave amplitude has been estimated and validated. Results indicate that sliding mass is the most significant factor influencing the wave amplitude on wave generation, with an average influence ratio of 19.0%, and there is a lower influence ratio of 12.3% for particle size parameter. The enlargement percentage induced by lateral confinement decreases from 55.0% to 31.1% on wave generation location as the slide Froude number increases. On the location of wave propagation, the enlargement percentage increases as the slide Froude number increases, ranging from 17.4% to 47.7%. Equations of the enlargement percentage are presented in this study to align the maximum wave amplitude when physical experiments are influenced by lateral confinement.Keywords: Lateral confinementlandslide-generated wavenumerical simulationphysical modelling testwave amplitudewave attenuation AcknowledgementsCritical comments by the anonymous reviewers greatly improved the initial manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis study was financially supported by the National Natural Science Foundation of China [U2240221 and 41977229] and the Sichuan Province Youth Science and Technology Innovation Team [2020JDTD0006].","PeriodicalId":54802,"journal":{"name":"Journal of Hydraulic Research","volume":"33 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of lateral confinement on wave generation and attenuation induced by granular debris\",\"authors\":\"Yu-Xiang Hu, Xing-Yu Long, Hai-Bo Li, Cong-Jiang Li, Jia-Wen Zhou\",\"doi\":\"10.1080/00221686.2023.2255848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThe lateral confinement effect significantly influences wave amplitude at the generation and propagation stage. A series of physical experiments and numerical simulations considering different parameters was conducted to study the effect of lateral confinement on waves, and the enlargement percentage from lateral confinement on the maximum wave amplitude has been estimated and validated. Results indicate that sliding mass is the most significant factor influencing the wave amplitude on wave generation, with an average influence ratio of 19.0%, and there is a lower influence ratio of 12.3% for particle size parameter. The enlargement percentage induced by lateral confinement decreases from 55.0% to 31.1% on wave generation location as the slide Froude number increases. On the location of wave propagation, the enlargement percentage increases as the slide Froude number increases, ranging from 17.4% to 47.7%. Equations of the enlargement percentage are presented in this study to align the maximum wave amplitude when physical experiments are influenced by lateral confinement.Keywords: Lateral confinementlandslide-generated wavenumerical simulationphysical modelling testwave amplitudewave attenuation AcknowledgementsCritical comments by the anonymous reviewers greatly improved the initial manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis study was financially supported by the National Natural Science Foundation of China [U2240221 and 41977229] and the Sichuan Province Youth Science and Technology Innovation Team [2020JDTD0006].\",\"PeriodicalId\":54802,\"journal\":{\"name\":\"Journal of Hydraulic Research\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydraulic Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00221686.2023.2255848\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydraulic Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00221686.2023.2255848","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

摘要侧向约束效应对产生和传播阶段的波幅有显著影响。通过一系列考虑不同参数的物理实验和数值模拟,研究了侧向约束对波浪的影响,估计并验证了侧向约束对最大波幅的放大百分比。结果表明,滑动质量是影响波浪振幅对波浪产生影响最显著的因素,平均影响率为19.0%,粒径参数的影响率较低,为12.3%。随着滑动弗劳德数的增加,侧向约束对波发生位置的放大百分比从55.0%减小到31.1%。在波传播位置上,随玻片弗劳德数的增加,放大百分比增大,范围为17.4% ~ 47.7%。本文提出了放大百分比方程,以对准物理实验中受侧向约束影响时的最大波幅。关键词:横向围合;滑坡产生的波数值模拟;物理模拟;披露声明作者未报告潜在的利益冲突。本研究得到国家自然科学基金[U2240221和41977229]和四川省青少年科技创新团队[2020JDTD0006]的资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of lateral confinement on wave generation and attenuation induced by granular debris
ABSTRACTThe lateral confinement effect significantly influences wave amplitude at the generation and propagation stage. A series of physical experiments and numerical simulations considering different parameters was conducted to study the effect of lateral confinement on waves, and the enlargement percentage from lateral confinement on the maximum wave amplitude has been estimated and validated. Results indicate that sliding mass is the most significant factor influencing the wave amplitude on wave generation, with an average influence ratio of 19.0%, and there is a lower influence ratio of 12.3% for particle size parameter. The enlargement percentage induced by lateral confinement decreases from 55.0% to 31.1% on wave generation location as the slide Froude number increases. On the location of wave propagation, the enlargement percentage increases as the slide Froude number increases, ranging from 17.4% to 47.7%. Equations of the enlargement percentage are presented in this study to align the maximum wave amplitude when physical experiments are influenced by lateral confinement.Keywords: Lateral confinementlandslide-generated wavenumerical simulationphysical modelling testwave amplitudewave attenuation AcknowledgementsCritical comments by the anonymous reviewers greatly improved the initial manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis study was financially supported by the National Natural Science Foundation of China [U2240221 and 41977229] and the Sichuan Province Youth Science and Technology Innovation Team [2020JDTD0006].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydraulic Research
Journal of Hydraulic Research 工程技术-工程:土木
CiteScore
4.90
自引率
4.30%
发文量
55
审稿时长
6.6 months
期刊介绍: The Journal of Hydraulic Research (JHR) is the flagship journal of the International Association for Hydro-Environment Engineering and Research (IAHR). It publishes research papers in theoretical, experimental and computational hydraulics and fluid mechanics, particularly relating to rivers, lakes, estuaries, coasts, constructed waterways, and some internal flows such as pipe flows. To reflect current tendencies in water research, outcomes of interdisciplinary hydro-environment studies with a strong fluid mechanical component are especially invited. Although the preference is given to the fundamental issues, the papers focusing on important unconventional or emerging applications of broad interest are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信