时间分数阶非线性Schrödinger方程的双网格有限元方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hanzhang Hu, Yanping Chen, Jianwei Zhou
{"title":"时间分数阶非线性Schrödinger方程的双网格有限元方法","authors":"Hanzhang Hu, Yanping Chen, Jianwei Zhou","doi":"10.1002/num.23073","DOIUrl":null,"url":null,"abstract":"Abstract A two‐grid finite element method with nonuniform L1 scheme is developed for solving the time‐fractional nonlinear Schrödinger equation. The finite element solution in the ‐norm and ‐norm are proved bounded without any time‐step size conditions (dependent on spatial‐step size). Then, the optimal order error estimations of the two‐grid solution in the ‐norm are proved without any time‐step size conditions. Finally, the theoretical results are verified by numerical experiments.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two‐grid finite element method on grade meshes for time‐fractional nonlinear Schrödinger equation\",\"authors\":\"Hanzhang Hu, Yanping Chen, Jianwei Zhou\",\"doi\":\"10.1002/num.23073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A two‐grid finite element method with nonuniform L1 scheme is developed for solving the time‐fractional nonlinear Schrödinger equation. The finite element solution in the ‐norm and ‐norm are proved bounded without any time‐step size conditions (dependent on spatial‐step size). Then, the optimal order error estimations of the two‐grid solution in the ‐norm are proved without any time‐step size conditions. Finally, the theoretical results are verified by numerical experiments.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/num.23073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了求解时间分数阶非线性Schrödinger方程的非均匀L1格式双网格有限元方法。证明了-范数和-范数的有限元解在没有任何时间步长条件(取决于空间步长)的情况下是有界的。然后,在没有任何时间步长条件的情况下,证明了两网格解在范数下的最优阶误差估计。最后通过数值实验对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two‐grid finite element method on grade meshes for time‐fractional nonlinear Schrödinger equation
Abstract A two‐grid finite element method with nonuniform L1 scheme is developed for solving the time‐fractional nonlinear Schrödinger equation. The finite element solution in the ‐norm and ‐norm are proved bounded without any time‐step size conditions (dependent on spatial‐step size). Then, the optimal order error estimations of the two‐grid solution in the ‐norm are proved without any time‐step size conditions. Finally, the theoretical results are verified by numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信