Fady Tarek Farouk, Abdel Nasser Tawfik, Fawzy Salah Tarabia, Muhammad Maher
{"title":"论度量张量的可能最小长度变形、列维-西维塔连接和黎曼曲率张量","authors":"Fady Tarek Farouk, Abdel Nasser Tawfik, Fawzy Salah Tarabia, Muhammad Maher","doi":"10.3390/physics5040064","DOIUrl":null,"url":null,"abstract":"The minimal length conjecture is merged with a generalized quantum uncertainty formula, where we identify the minimal uncertainty in a particle’s position as the minimal measurable length scale. Thus, we obtain a quantum-induced deformation parameter that directly depends on the chosen minimal length scale. This quantum-induced deformation is conjectured to require the generalization of Riemannian spacetime geometry underlying the classical theory of general relativity to an eight-dimensional spacetime fiber bundle, which dictates the deformation of the line element, metric tensor, Levi-Civita connection, Riemann curvature tensor, etc. We calculate the deformation thus produced in the Levi-Civita connection and find it to explicitly and exclusively depend on the product of the minimum measurable length and the particle’s spacelike four-acceleration vector, L2x¨2. We find that the deformed Levi-Civita connection preserves all properties of its undeformed counterpart, such as torsion freedom and metric compatibility. Accordingly, we have constructed a deformed version of the Riemann curvature tensor whose expression can be factorized in all its terms with different functions of L2x¨2. We also show that the classical four-manifold status of being Riemannian is preserved when the quantum-induced deformation is negligible. We study the dependence of a parallel-transported tangent vector on the spacelike four-acceleration. We illustrate the impact of the minimal-length-induced quantum deformation on the classical geometrical objects of the general theory of relativity using the unit radius two-sphere example. We conclude that the minimal length deformation implies a correction to the spacetime curvature and its contractions, which is manifest in the additional curvature terms of the corrected Riemann tensor. Accordingly, quantum-induced effects endow an additional spacetime curvature and geometrical structure.","PeriodicalId":20136,"journal":{"name":"Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Possible Minimal Length Deformation of Metric Tensor, Levi-Civita Connection, and the Riemann Curvature Tensor\",\"authors\":\"Fady Tarek Farouk, Abdel Nasser Tawfik, Fawzy Salah Tarabia, Muhammad Maher\",\"doi\":\"10.3390/physics5040064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minimal length conjecture is merged with a generalized quantum uncertainty formula, where we identify the minimal uncertainty in a particle’s position as the minimal measurable length scale. Thus, we obtain a quantum-induced deformation parameter that directly depends on the chosen minimal length scale. This quantum-induced deformation is conjectured to require the generalization of Riemannian spacetime geometry underlying the classical theory of general relativity to an eight-dimensional spacetime fiber bundle, which dictates the deformation of the line element, metric tensor, Levi-Civita connection, Riemann curvature tensor, etc. We calculate the deformation thus produced in the Levi-Civita connection and find it to explicitly and exclusively depend on the product of the minimum measurable length and the particle’s spacelike four-acceleration vector, L2x¨2. We find that the deformed Levi-Civita connection preserves all properties of its undeformed counterpart, such as torsion freedom and metric compatibility. Accordingly, we have constructed a deformed version of the Riemann curvature tensor whose expression can be factorized in all its terms with different functions of L2x¨2. We also show that the classical four-manifold status of being Riemannian is preserved when the quantum-induced deformation is negligible. We study the dependence of a parallel-transported tangent vector on the spacelike four-acceleration. We illustrate the impact of the minimal-length-induced quantum deformation on the classical geometrical objects of the general theory of relativity using the unit radius two-sphere example. We conclude that the minimal length deformation implies a correction to the spacetime curvature and its contractions, which is manifest in the additional curvature terms of the corrected Riemann tensor. Accordingly, quantum-induced effects endow an additional spacetime curvature and geometrical structure.\",\"PeriodicalId\":20136,\"journal\":{\"name\":\"Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/physics5040064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/physics5040064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
On Possible Minimal Length Deformation of Metric Tensor, Levi-Civita Connection, and the Riemann Curvature Tensor
The minimal length conjecture is merged with a generalized quantum uncertainty formula, where we identify the minimal uncertainty in a particle’s position as the minimal measurable length scale. Thus, we obtain a quantum-induced deformation parameter that directly depends on the chosen minimal length scale. This quantum-induced deformation is conjectured to require the generalization of Riemannian spacetime geometry underlying the classical theory of general relativity to an eight-dimensional spacetime fiber bundle, which dictates the deformation of the line element, metric tensor, Levi-Civita connection, Riemann curvature tensor, etc. We calculate the deformation thus produced in the Levi-Civita connection and find it to explicitly and exclusively depend on the product of the minimum measurable length and the particle’s spacelike four-acceleration vector, L2x¨2. We find that the deformed Levi-Civita connection preserves all properties of its undeformed counterpart, such as torsion freedom and metric compatibility. Accordingly, we have constructed a deformed version of the Riemann curvature tensor whose expression can be factorized in all its terms with different functions of L2x¨2. We also show that the classical four-manifold status of being Riemannian is preserved when the quantum-induced deformation is negligible. We study the dependence of a parallel-transported tangent vector on the spacelike four-acceleration. We illustrate the impact of the minimal-length-induced quantum deformation on the classical geometrical objects of the general theory of relativity using the unit radius two-sphere example. We conclude that the minimal length deformation implies a correction to the spacetime curvature and its contractions, which is manifest in the additional curvature terms of the corrected Riemann tensor. Accordingly, quantum-induced effects endow an additional spacetime curvature and geometrical structure.