局部正交化在分布式声传感数据处理中的弱信号保护——以FORGE数据为例

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Geophysics Pub Date : 2023-11-10 DOI:10.1190/geo2022-0676.1
Yapo Abolé Serge Innocent Oboué, Yunfeng Chen, Sergey Fomel, Yangkang Chen
{"title":"局部正交化在分布式声传感数据处理中的弱信号保护——以FORGE数据为例","authors":"Yapo Abolé Serge Innocent Oboué, Yunfeng Chen, Sergey Fomel, Yangkang Chen","doi":"10.1190/geo2022-0676.1","DOIUrl":null,"url":null,"abstract":"The development of the distributed acoustic sensing (DAS) technique enables us to record seismic data at a significantly improved spatial sampling rate at meter scales, which offers new opportunities for high-resolution subsurface imaging. However, DAS recordings are often characterized by low signal-to-noise ratio (S/N) due to the presence of data noise, significantly degrading the reliability of imaging and interpretation. Current DAS data noise reduction methods remain insufficient in simultaneously preserving weak signals and eliminating various types of noise. Particularly, when dealing with DAS data that are contaminated by four types of noise (i.e., high-frequency noise, high-amplitude erratic noise, horizontal noise, and random background noise), it becomes challenging to attenuate the weak signals while maintaining fine-scale features. To address the issues raised above, we propose an integrated local orthogonalization (LO) method that can remove a mixture of different types of noise while protecting the useful signal. The proposed LO method effectively eliminates the aforementioned noise by concatenating multiple denoising operators including a bandpass filter, structure-oriented spatially-varying median filter, dip filter in the frequency-wavenumber domain, and curvelet filter. Next, the local orthogonalization weighting operator is applied to extract signal energy from the removed noise section. We demonstrate the robustness of the proposed LO method on various challenging DAS datasets from the FORGE geothermal field. The denoising results demonstrate that the proposed LO method can successfully minimize the levels of different types of noise while preserving the energy of weak signals.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"93 18","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protecting the weak signals in distributed acoustic sensing data processing using local orthogonalization: the FORGE data example\",\"authors\":\"Yapo Abolé Serge Innocent Oboué, Yunfeng Chen, Sergey Fomel, Yangkang Chen\",\"doi\":\"10.1190/geo2022-0676.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of the distributed acoustic sensing (DAS) technique enables us to record seismic data at a significantly improved spatial sampling rate at meter scales, which offers new opportunities for high-resolution subsurface imaging. However, DAS recordings are often characterized by low signal-to-noise ratio (S/N) due to the presence of data noise, significantly degrading the reliability of imaging and interpretation. Current DAS data noise reduction methods remain insufficient in simultaneously preserving weak signals and eliminating various types of noise. Particularly, when dealing with DAS data that are contaminated by four types of noise (i.e., high-frequency noise, high-amplitude erratic noise, horizontal noise, and random background noise), it becomes challenging to attenuate the weak signals while maintaining fine-scale features. To address the issues raised above, we propose an integrated local orthogonalization (LO) method that can remove a mixture of different types of noise while protecting the useful signal. The proposed LO method effectively eliminates the aforementioned noise by concatenating multiple denoising operators including a bandpass filter, structure-oriented spatially-varying median filter, dip filter in the frequency-wavenumber domain, and curvelet filter. Next, the local orthogonalization weighting operator is applied to extract signal energy from the removed noise section. We demonstrate the robustness of the proposed LO method on various challenging DAS datasets from the FORGE geothermal field. The denoising results demonstrate that the proposed LO method can successfully minimize the levels of different types of noise while preserving the energy of weak signals.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":\"93 18\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2022-0676.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2022-0676.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

分布式声传感(DAS)技术的发展使我们能够以显著提高的米尺度空间采样率记录地震数据,这为高分辨率地下成像提供了新的机会。然而,由于数据噪声的存在,DAS记录通常具有低信噪比(S/N)的特点,这大大降低了成像和解释的可靠性。现有的DAS数据降噪方法在同时保持微弱信号和消除各种类型的噪声方面存在不足。特别是,当处理被四种类型的噪声(即高频噪声、高振幅不稳定噪声、水平噪声和随机背景噪声)污染的DAS数据时,在保持精细尺度特征的同时减弱弱信号变得具有挑战性。为了解决上述问题,我们提出了一种集成的局部正交化(LO)方法,该方法可以在保护有用信号的同时去除不同类型的混合噪声。该方法通过将带通滤波器、面向结构的空间变化中值滤波器、频波数域倾角滤波器和曲线滤波器等多个去噪算子串联起来,有效地消除了上述噪声。然后,利用局部正交化加权算子从去除的噪声部分提取信号能量。我们在FORGE地热田的各种具有挑战性的DAS数据集上证明了所提出的LO方法的鲁棒性。结果表明,该方法能够在保持弱信号能量的同时,有效地降低不同类型噪声的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protecting the weak signals in distributed acoustic sensing data processing using local orthogonalization: the FORGE data example
The development of the distributed acoustic sensing (DAS) technique enables us to record seismic data at a significantly improved spatial sampling rate at meter scales, which offers new opportunities for high-resolution subsurface imaging. However, DAS recordings are often characterized by low signal-to-noise ratio (S/N) due to the presence of data noise, significantly degrading the reliability of imaging and interpretation. Current DAS data noise reduction methods remain insufficient in simultaneously preserving weak signals and eliminating various types of noise. Particularly, when dealing with DAS data that are contaminated by four types of noise (i.e., high-frequency noise, high-amplitude erratic noise, horizontal noise, and random background noise), it becomes challenging to attenuate the weak signals while maintaining fine-scale features. To address the issues raised above, we propose an integrated local orthogonalization (LO) method that can remove a mixture of different types of noise while protecting the useful signal. The proposed LO method effectively eliminates the aforementioned noise by concatenating multiple denoising operators including a bandpass filter, structure-oriented spatially-varying median filter, dip filter in the frequency-wavenumber domain, and curvelet filter. Next, the local orthogonalization weighting operator is applied to extract signal energy from the removed noise section. We demonstrate the robustness of the proposed LO method on various challenging DAS datasets from the FORGE geothermal field. The denoising results demonstrate that the proposed LO method can successfully minimize the levels of different types of noise while preserving the energy of weak signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信