{"title":"Vu猜想的一个特例:最大有界度的近不相交图的上色","authors":"Tom Kelly, Daniela Kühn, Deryk Osthus","doi":"10.1017/s0963548323000299","DOIUrl":null,"url":null,"abstract":"Abstract A collection of graphs is nearly disjoint if every pair of them intersects in at most one vertex. We prove that if $G_1, \\dots, G_m$ are nearly disjoint graphs of maximum degree at most $D$ , then the following holds. For every fixed $C$ , if each vertex $v \\in \\bigcup _{i=1}^m V(G_i)$ is contained in at most $C$ of the graphs $G_1, \\dots, G_m$ , then the (list) chromatic number of $\\bigcup _{i=1}^m G_i$ is at most $D + o(D)$ . This result confirms a special case of a conjecture of Vu and generalizes Kahn’s bound on the list chromatic index of linear uniform hypergraphs of bounded maximum degree. In fact, this result holds for the correspondence (or DP) chromatic number and thus implies a recent result of Molloy and Postle, and we derive this result from a more general list colouring result in the setting of ‘colour degrees’ that also implies a result of Reed and Sudakov.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":"94 6","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A special case of Vu’s conjecture: colouring nearly disjoint graphs of bounded maximum degree\",\"authors\":\"Tom Kelly, Daniela Kühn, Deryk Osthus\",\"doi\":\"10.1017/s0963548323000299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A collection of graphs is nearly disjoint if every pair of them intersects in at most one vertex. We prove that if $G_1, \\\\dots, G_m$ are nearly disjoint graphs of maximum degree at most $D$ , then the following holds. For every fixed $C$ , if each vertex $v \\\\in \\\\bigcup _{i=1}^m V(G_i)$ is contained in at most $C$ of the graphs $G_1, \\\\dots, G_m$ , then the (list) chromatic number of $\\\\bigcup _{i=1}^m G_i$ is at most $D + o(D)$ . This result confirms a special case of a conjecture of Vu and generalizes Kahn’s bound on the list chromatic index of linear uniform hypergraphs of bounded maximum degree. In fact, this result holds for the correspondence (or DP) chromatic number and thus implies a recent result of Molloy and Postle, and we derive this result from a more general list colouring result in the setting of ‘colour degrees’ that also implies a result of Reed and Sudakov.\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":\"94 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000299\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000299","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A special case of Vu’s conjecture: colouring nearly disjoint graphs of bounded maximum degree
Abstract A collection of graphs is nearly disjoint if every pair of them intersects in at most one vertex. We prove that if $G_1, \dots, G_m$ are nearly disjoint graphs of maximum degree at most $D$ , then the following holds. For every fixed $C$ , if each vertex $v \in \bigcup _{i=1}^m V(G_i)$ is contained in at most $C$ of the graphs $G_1, \dots, G_m$ , then the (list) chromatic number of $\bigcup _{i=1}^m G_i$ is at most $D + o(D)$ . This result confirms a special case of a conjecture of Vu and generalizes Kahn’s bound on the list chromatic index of linear uniform hypergraphs of bounded maximum degree. In fact, this result holds for the correspondence (or DP) chromatic number and thus implies a recent result of Molloy and Postle, and we derive this result from a more general list colouring result in the setting of ‘colour degrees’ that also implies a result of Reed and Sudakov.
期刊介绍:
Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.