Lehmer反正切和的视觉证明

Q4 Mathematics
Rex H. Wu
{"title":"Lehmer反正切和的视觉证明","authors":"Rex H. Wu","doi":"10.1080/0025570x.2023.2266313","DOIUrl":null,"url":null,"abstract":"SummaryWe provide a visual proof to Lehmer’s infinite sum of the arctangents of the inverse of the odd-indexed Fibonacci numbers. A few corollaries follow from the diagram, including Euler’s Machin-like formula and Strassnitzky’s formula.MSC: 11B39 Additional informationNotes on contributorsRex H. WuREX H. WU (MR Author ID: 1293646, ORCID 0000-0003-0970-3741) would like to thank the anonymous reviewer and the Editor for their many generous suggestions. Rex has been working with Garfield’s trapezoid for many years. He recently found more applications of it on the Fibonacci numbers. This article is one of them. Talking about Garfield’s trapezoid, which is named after president James A. Garfield for his proof on the Pythagorean theorem, Rex unexpectedly met his great-great-grandson Mr. Peter Garfield recently.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Visual Proof of Lehmer’s Arctangent Sum\",\"authors\":\"Rex H. Wu\",\"doi\":\"10.1080/0025570x.2023.2266313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryWe provide a visual proof to Lehmer’s infinite sum of the arctangents of the inverse of the odd-indexed Fibonacci numbers. A few corollaries follow from the diagram, including Euler’s Machin-like formula and Strassnitzky’s formula.MSC: 11B39 Additional informationNotes on contributorsRex H. WuREX H. WU (MR Author ID: 1293646, ORCID 0000-0003-0970-3741) would like to thank the anonymous reviewer and the Editor for their many generous suggestions. Rex has been working with Garfield’s trapezoid for many years. He recently found more applications of it on the Fibonacci numbers. This article is one of them. Talking about Garfield’s trapezoid, which is named after president James A. Garfield for his proof on the Pythagorean theorem, Rex unexpectedly met his great-great-grandson Mr. Peter Garfield recently.\",\"PeriodicalId\":18344,\"journal\":{\"name\":\"Mathematics Magazine\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0025570x.2023.2266313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570x.2023.2266313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要给出了奇索引斐波那契数列的倒数的正切无穷和的一个视觉证明。从图中可以得出一些推论,包括欧拉的类机器公式和斯特拉斯尼茨基的公式。作者简介:rex H. WuREX H. WU(作者ID: 1293646, ORCID 0000-0003-0970-3741)在此感谢匿名审稿人和编辑的慷慨建议。雷克斯多年来一直在研究加菲猫的梯形。他最近在斐波那契数列上发现了更多的应用。这篇文章就是其中之一。最近,雷克斯在谈到以证明毕达哥拉斯定理的美国总统詹姆斯·a·加菲尔德命名的加菲猫梯形时,意外地遇到了他的曾曾孙彼得·加菲尔德先生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Visual Proof of Lehmer’s Arctangent Sum
SummaryWe provide a visual proof to Lehmer’s infinite sum of the arctangents of the inverse of the odd-indexed Fibonacci numbers. A few corollaries follow from the diagram, including Euler’s Machin-like formula and Strassnitzky’s formula.MSC: 11B39 Additional informationNotes on contributorsRex H. WuREX H. WU (MR Author ID: 1293646, ORCID 0000-0003-0970-3741) would like to thank the anonymous reviewer and the Editor for their many generous suggestions. Rex has been working with Garfield’s trapezoid for many years. He recently found more applications of it on the Fibonacci numbers. This article is one of them. Talking about Garfield’s trapezoid, which is named after president James A. Garfield for his proof on the Pythagorean theorem, Rex unexpectedly met his great-great-grandson Mr. Peter Garfield recently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics Magazine
Mathematics Magazine Mathematics-Mathematics (all)
CiteScore
0.20
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信