基于Wasserstein ALI和改进MIPGAN的最坏情况变形

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
U. M. Kelly, M. Nauta, L. Liu, L. J. Spreeuwers, R. N. J. Veldhuis
{"title":"基于Wasserstein ALI和改进MIPGAN的最坏情况变形","authors":"U. M. Kelly, M. Nauta, L. Liu, L. J. Spreeuwers, R. N. J. Veldhuis","doi":"10.1049/2023/9353816","DOIUrl":null,"url":null,"abstract":"A morph is a combination of two separate facial images and contains the identity information of two different people. When used in an identity document, both people can be authenticated by a biometric face recognition (FR) system. Morphs can be generated using either a landmark-based approach or approaches based on deep learning, such as generative adversarial networks (GANs). In a recent paper, we introduced a worst-case upper bound on how challenging morphing attacks can be for an FR system. The closer morphs are to this upper bound, the bigger the challenge they pose to FR. We introduced an approach with which it was possible to generate morphs that approximate this upper bound for a known FR system (white box) but not for unknown (black box) FR systems. In this paper, we introduce a morph generation method that can approximate worst-case morphs even when the FR system is not known. A key contribution is that we include the goal of generating difficult morphs during training. Our method is based on adversarially learned inference (ALI) and uses concepts from Wasserstein GANs trained with gradient penalty, which were introduced to stabilise the training of GANs. We include these concepts to achieve a similar improvement in training stability and call the resulting method Wasserstein ALI (WALI). We finetune WALI using loss functions designed specifically to improve the ability to manipulate identity information in facial images and show how it can generate morphs that are more challenging for FR systems than landmark- or GAN-based morphs. We also show how our findings can be used to improve MIPGAN, an existing StyleGAN-based morph generator.","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"81 4","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Worst-Case Morphs Using Wasserstein ALI and Improved MIPGAN\",\"authors\":\"U. M. Kelly, M. Nauta, L. Liu, L. J. Spreeuwers, R. N. J. Veldhuis\",\"doi\":\"10.1049/2023/9353816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A morph is a combination of two separate facial images and contains the identity information of two different people. When used in an identity document, both people can be authenticated by a biometric face recognition (FR) system. Morphs can be generated using either a landmark-based approach or approaches based on deep learning, such as generative adversarial networks (GANs). In a recent paper, we introduced a worst-case upper bound on how challenging morphing attacks can be for an FR system. The closer morphs are to this upper bound, the bigger the challenge they pose to FR. We introduced an approach with which it was possible to generate morphs that approximate this upper bound for a known FR system (white box) but not for unknown (black box) FR systems. In this paper, we introduce a morph generation method that can approximate worst-case morphs even when the FR system is not known. A key contribution is that we include the goal of generating difficult morphs during training. Our method is based on adversarially learned inference (ALI) and uses concepts from Wasserstein GANs trained with gradient penalty, which were introduced to stabilise the training of GANs. We include these concepts to achieve a similar improvement in training stability and call the resulting method Wasserstein ALI (WALI). We finetune WALI using loss functions designed specifically to improve the ability to manipulate identity information in facial images and show how it can generate morphs that are more challenging for FR systems than landmark- or GAN-based morphs. We also show how our findings can be used to improve MIPGAN, an existing StyleGAN-based morph generator.\",\"PeriodicalId\":48821,\"journal\":{\"name\":\"IET Biometrics\",\"volume\":\"81 4\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Biometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/2023/9353816\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/9353816","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

变形是两个独立的面部图像的组合,包含两个不同的人的身份信息。当用于身份证件时,两个人都可以通过生物面部识别(FR)系统进行身份验证。形态可以使用基于里程碑的方法或基于深度学习的方法生成,例如生成对抗网络(gan)。在最近的一篇论文中,我们引入了一个最坏情况上界,说明变形攻击对FR系统的挑战性。形态越接近这个上限,它们对FR构成的挑战就越大。我们引入了一种方法,可以为已知FR系统(白盒)生成近似这个上限的形态,但不适合未知FR系统(黑盒)。在本文中,我们介绍了一种变形生成方法,即使在FR系统未知的情况下,也能近似出最坏情况的变形。一个关键的贡献是我们在训练过程中包含了生成困难变形的目标。我们的方法基于对抗学习推理(ALI),并使用梯度惩罚训练的Wasserstein gan的概念,引入梯度惩罚是为了稳定gan的训练。我们将这些概念纳入训练稳定性的类似改进中,并将得到的方法称为Wasserstein ALI (WALI)。我们使用专门设计的损失函数对WALI进行微调,以提高在面部图像中操纵身份信息的能力,并展示它如何生成对FR系统来说比基于地标或gan的变体更具挑战性的变体。我们还展示了如何将我们的发现用于改进现有的基于stylegan的形态生成器MIPGAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Worst-Case Morphs Using Wasserstein ALI and Improved MIPGAN
A morph is a combination of two separate facial images and contains the identity information of two different people. When used in an identity document, both people can be authenticated by a biometric face recognition (FR) system. Morphs can be generated using either a landmark-based approach or approaches based on deep learning, such as generative adversarial networks (GANs). In a recent paper, we introduced a worst-case upper bound on how challenging morphing attacks can be for an FR system. The closer morphs are to this upper bound, the bigger the challenge they pose to FR. We introduced an approach with which it was possible to generate morphs that approximate this upper bound for a known FR system (white box) but not for unknown (black box) FR systems. In this paper, we introduce a morph generation method that can approximate worst-case morphs even when the FR system is not known. A key contribution is that we include the goal of generating difficult morphs during training. Our method is based on adversarially learned inference (ALI) and uses concepts from Wasserstein GANs trained with gradient penalty, which were introduced to stabilise the training of GANs. We include these concepts to achieve a similar improvement in training stability and call the resulting method Wasserstein ALI (WALI). We finetune WALI using loss functions designed specifically to improve the ability to manipulate identity information in facial images and show how it can generate morphs that are more challenging for FR systems than landmark- or GAN-based morphs. We also show how our findings can be used to improve MIPGAN, an existing StyleGAN-based morph generator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信