基于量子点的倍频器

IF 11 Q1 PHYSICS, APPLIED
Oakes, G. A., Peri, L., Cochrane, L., Martins, F., Hutin, L., Bertrand, B., Vinet, M., Saiz, A. Gomez, Ford, C. J. B., Smith, C. G., Gonzalez-Zalba, M. F.
{"title":"基于量子点的倍频器","authors":"Oakes, G. A., Peri, L., Cochrane, L., Martins, F., Hutin, L., Bertrand, B., Vinet, M., Saiz, A. Gomez, Ford, C. J. B., Smith, C. G., Gonzalez-Zalba, M. F.","doi":"10.1103/prxquantum.4.020346","DOIUrl":null,"url":null,"abstract":"Silicon offers the enticing opportunity to integrate hybrid quantum-classical computing systems on a single platform. For qubit control and readout, high-frequency signals are required. Therefore, devices that can facilitate its generation are needed. Here, we present a quantum dot-based radiofrequency multiplier operated at cryogenic temperatures. The device is based on the non-linear capacitance-voltage characteristics of quantum dot systems arising from their low-dimensional density of states. We implement the multiplier in a multi-gate silicon nanowire transistor using two complementary device configurations: a single quantum dot coupled to a charge reservoir and a coupled double quantum dot. We study the harmonic voltage conversion as a function of energy detuning, multiplication factor and harmonic phase noise and find near ideal performance up to a multiplication factor of 10. Our results demonstrate a method for high-frequency conversion that could be readily integrated into silicon-based quantum computing systems and be applied to other semiconductors.","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":"23 1","pages":"0"},"PeriodicalIF":11.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum Dot-Based Frequency Multiplier\",\"authors\":\"Oakes, G. A., Peri, L., Cochrane, L., Martins, F., Hutin, L., Bertrand, B., Vinet, M., Saiz, A. Gomez, Ford, C. J. B., Smith, C. G., Gonzalez-Zalba, M. F.\",\"doi\":\"10.1103/prxquantum.4.020346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon offers the enticing opportunity to integrate hybrid quantum-classical computing systems on a single platform. For qubit control and readout, high-frequency signals are required. Therefore, devices that can facilitate its generation are needed. Here, we present a quantum dot-based radiofrequency multiplier operated at cryogenic temperatures. The device is based on the non-linear capacitance-voltage characteristics of quantum dot systems arising from their low-dimensional density of states. We implement the multiplier in a multi-gate silicon nanowire transistor using two complementary device configurations: a single quantum dot coupled to a charge reservoir and a coupled double quantum dot. We study the harmonic voltage conversion as a function of energy detuning, multiplication factor and harmonic phase noise and find near ideal performance up to a multiplication factor of 10. Our results demonstrate a method for high-frequency conversion that could be readily integrated into silicon-based quantum computing systems and be applied to other semiconductors.\",\"PeriodicalId\":74587,\"journal\":{\"name\":\"PRX quantum : a Physical Review journal\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX quantum : a Physical Review journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.4.020346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX quantum : a Physical Review journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.4.020346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

硅提供了在单一平台上集成混合量子经典计算系统的诱人机会。对于量子位控制和读出,需要高频信号。因此,需要能够促进其产生的设备。在这里,我们提出了一种在低温下工作的基于量子点的射频倍增器。该器件是基于量子点系统的非线性电容电压特性产生的低维状态密度。我们使用两种互补的器件配置在多栅极硅纳米线晶体管中实现该倍增器:一个耦合到电荷库的单量子点和一个耦合的双量子点。我们研究了谐波电压转换作为能量失谐、倍增因子和谐波相位噪声的函数,并找到接近理想性能的倍增因子高达10。我们的研究结果展示了一种高频转换方法,可以很容易地集成到硅基量子计算系统中,并应用于其他半导体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Dot-Based Frequency Multiplier
Silicon offers the enticing opportunity to integrate hybrid quantum-classical computing systems on a single platform. For qubit control and readout, high-frequency signals are required. Therefore, devices that can facilitate its generation are needed. Here, we present a quantum dot-based radiofrequency multiplier operated at cryogenic temperatures. The device is based on the non-linear capacitance-voltage characteristics of quantum dot systems arising from their low-dimensional density of states. We implement the multiplier in a multi-gate silicon nanowire transistor using two complementary device configurations: a single quantum dot coupled to a charge reservoir and a coupled double quantum dot. We study the harmonic voltage conversion as a function of energy detuning, multiplication factor and harmonic phase noise and find near ideal performance up to a multiplication factor of 10. Our results demonstrate a method for high-frequency conversion that could be readily integrated into silicon-based quantum computing systems and be applied to other semiconductors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信