二维二硫化钼纳米颗粒增强紫外吸收

Muntaser Abdelrahman Almansoori, Ayman Rezk, Sabina Abdul Hadi, Ammar Nayfeh
{"title":"二维二硫化钼纳米颗粒增强紫外吸收","authors":"Muntaser Abdelrahman Almansoori, Ayman Rezk, Sabina Abdul Hadi, Ammar Nayfeh","doi":"10.1149/ma2023-01321826mtgabs","DOIUrl":null,"url":null,"abstract":"MoS 2 is one of the promising 2D materials that caught the interest of many research fields[1], [2] due to their size-dependent tunable bandgap and attractive magnetic, optical, and electrical properties[3]. Furthermore, recently there has been a growing interest in utilizing MoS 2 for solar cell applications that demonstrated measurable device enhancements[4]–[6]. Hence, there is a great interest in understanding its potential for solar energy harvesting. In this study, we show a simple method to deposit a 2D layer of MoS 2 nanoparticles (NPs) on top of Aluminum-doped Zinc oxide (AZO) layer (transparent conductive oxide) and investigate its spectral response and potential for application in optoelectronic systems. A thin film of 80 nm AZO layer was grown on a 4-inch quartz wafer using thermal Atomic Layer Deposition (ALD) with a 1:19 ratio which has shown good electrical and optical qualities for solar cell applications[7]. We deposited the MoS 2 by spin-coating it on the AZO/quartz wafers for 40 sec at 1000 rpm. Incremental coating is carried on by dispersing seven layers with 500 μL of MoS 2 in each step using a precise pipet to a cumulative dispersion volume of 3500 μL. The prepared samples were characterized using a UV-Vis-NIR spectrometer (Perkin Elmer Lambda) across a wide range of wavelengths (250-1200 nm) by measuring both transmittance and reflectance and calculating absorbance. Furthermore, the base AZO/quartz and quartz background signal were measured before spin-coating as reference. The obtained data shows a high absorbance effect due to MoS 2 NPs at low wavelengths (<400 nm), where it peaks around 340 nm with an approximate absorbance of ~6.7%. Upon further examination, we notice that this behavior is not linear across the whole spectrum and instead is a function of (i) wavelength and (ii) MoS 2 quantity which could be partially due to the quantum confinement effect of several layers of stacked 3D MoS 2 nanoparticles[8]. This phenomenon could open the possibility of utilizing this material for low-wavelength filters or UV sensing applications[9]. Also, it can potentially be utilized for quantum down-conversion[10] of high-energy photons to re-emit photons at lower energies in order to enhance solar cells’ efficiencies and reduce thermal burden; however, further investigation is needed. [1] P. Zhou, C. Chen, X. Wang, B. Hu, and H. San, “2-Dimentional photoconductive MoS2 nanosheets using in surface acoustic wave resonators for ultraviolet light sensing,” Sensors and Actuators A: Physical , vol. 271, pp. 389–397, Mar. 2018, doi: 10.1016/j.sna.2017.12.007. [2] H. Dong et al. , “Fluorescent MoS 2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy,” ACS Appl. Mater. Interfaces , vol. 8, no. 5, pp. 3107–3114, Feb. 2016, doi: 10.1021/acsami.5b10459. [3] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS 2 : A New Direct-Gap Semiconductor,” Phys. Rev. Lett. , vol. 105, no. 13, p. 136805, Sep. 2010, doi: 10.1103/PhysRevLett.105.136805. [4] Y. Tsuboi et al. , “Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS 2 thin film,” Nanoscale , vol. 7, no. 34, pp. 14476–14482, 2015, doi: 10.1039/C5NR03046C. [5] N. A. Abd Malek et al. , “Ultra-thin MoS2 nanosheet for electron transport layer of perovskite solar cells,” Optical Materials , vol. 104, p. 109933, Jun. 2020, doi: 10.1016/j.optmat.2020.109933. [6] Y.-J. Huang, H.-C. Chen, H.-K. Lin, and K.-H. Wei, “Doping ZnO Electron Transport Layers with MoS 2 Nanosheets Enhances the Efficiency of Polymer Solar Cells,” ACS Appl. Mater. Interfaces , vol. 10, no. 23, pp. 20196–20204, Jun. 2018, doi: 10.1021/acsami.8b06413. [7] S. Abdul Hadi, G. Dushaq, and A. Nayfeh, “Effect of atomic layer deposited Al 2 O 3 :ZnO alloys on thin-film silicon photovoltaic devices,” Journal of Applied Physics , vol. 122, no. 24, p. 245103, Dec. 2017, doi: 10.1063/1.4990871. [8] T. Li and G. Galli, “Electronic Properties of MoS 2 Nanoparticles,” J. Phys. Chem. C , vol. 111, no. 44, pp. 16192–16196, Nov. 2007, doi: 10.1021/jp075424v. [9] Z. Lou et al. , “High-performance MoS_2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared,” Opt. Lett. , vol. 42, no. 17, p. 3335, Sep. 2017, doi: 10.1364/OL.42.003335. [10] A. P. Sunitha, P. Praveen, M. K. Jayaraj, and K. J. Saji, “Upconversion and downconversion photoluminescence and optical limiting in colloidal MoS2 nanostructures prepared by ultrasonication,” Optical Materials , vol. 85, pp. 61–70, Nov. 2018, doi: 10.1016/j.optmat.2018.08.038. [11] Y. Wu et al. , “Monolithic integration of MoS 2 -based visible detectors and GaN-based UV detectors,” Photon. Res. , vol. 7, no. 10, p. 1127, Oct. 2019, doi: 10.1364/PRJ.7.001127. Figure 1","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced UV Absorption By 2D MoS<sub>2</sub> Nanoparticles\",\"authors\":\"Muntaser Abdelrahman Almansoori, Ayman Rezk, Sabina Abdul Hadi, Ammar Nayfeh\",\"doi\":\"10.1149/ma2023-01321826mtgabs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MoS 2 is one of the promising 2D materials that caught the interest of many research fields[1], [2] due to their size-dependent tunable bandgap and attractive magnetic, optical, and electrical properties[3]. Furthermore, recently there has been a growing interest in utilizing MoS 2 for solar cell applications that demonstrated measurable device enhancements[4]–[6]. Hence, there is a great interest in understanding its potential for solar energy harvesting. In this study, we show a simple method to deposit a 2D layer of MoS 2 nanoparticles (NPs) on top of Aluminum-doped Zinc oxide (AZO) layer (transparent conductive oxide) and investigate its spectral response and potential for application in optoelectronic systems. A thin film of 80 nm AZO layer was grown on a 4-inch quartz wafer using thermal Atomic Layer Deposition (ALD) with a 1:19 ratio which has shown good electrical and optical qualities for solar cell applications[7]. We deposited the MoS 2 by spin-coating it on the AZO/quartz wafers for 40 sec at 1000 rpm. Incremental coating is carried on by dispersing seven layers with 500 μL of MoS 2 in each step using a precise pipet to a cumulative dispersion volume of 3500 μL. The prepared samples were characterized using a UV-Vis-NIR spectrometer (Perkin Elmer Lambda) across a wide range of wavelengths (250-1200 nm) by measuring both transmittance and reflectance and calculating absorbance. Furthermore, the base AZO/quartz and quartz background signal were measured before spin-coating as reference. The obtained data shows a high absorbance effect due to MoS 2 NPs at low wavelengths (<400 nm), where it peaks around 340 nm with an approximate absorbance of ~6.7%. Upon further examination, we notice that this behavior is not linear across the whole spectrum and instead is a function of (i) wavelength and (ii) MoS 2 quantity which could be partially due to the quantum confinement effect of several layers of stacked 3D MoS 2 nanoparticles[8]. This phenomenon could open the possibility of utilizing this material for low-wavelength filters or UV sensing applications[9]. Also, it can potentially be utilized for quantum down-conversion[10] of high-energy photons to re-emit photons at lower energies in order to enhance solar cells’ efficiencies and reduce thermal burden; however, further investigation is needed. [1] P. Zhou, C. Chen, X. Wang, B. Hu, and H. San, “2-Dimentional photoconductive MoS2 nanosheets using in surface acoustic wave resonators for ultraviolet light sensing,” Sensors and Actuators A: Physical , vol. 271, pp. 389–397, Mar. 2018, doi: 10.1016/j.sna.2017.12.007. [2] H. Dong et al. , “Fluorescent MoS 2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy,” ACS Appl. Mater. Interfaces , vol. 8, no. 5, pp. 3107–3114, Feb. 2016, doi: 10.1021/acsami.5b10459. [3] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS 2 : A New Direct-Gap Semiconductor,” Phys. Rev. Lett. , vol. 105, no. 13, p. 136805, Sep. 2010, doi: 10.1103/PhysRevLett.105.136805. [4] Y. Tsuboi et al. , “Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS 2 thin film,” Nanoscale , vol. 7, no. 34, pp. 14476–14482, 2015, doi: 10.1039/C5NR03046C. [5] N. A. Abd Malek et al. , “Ultra-thin MoS2 nanosheet for electron transport layer of perovskite solar cells,” Optical Materials , vol. 104, p. 109933, Jun. 2020, doi: 10.1016/j.optmat.2020.109933. [6] Y.-J. Huang, H.-C. Chen, H.-K. Lin, and K.-H. Wei, “Doping ZnO Electron Transport Layers with MoS 2 Nanosheets Enhances the Efficiency of Polymer Solar Cells,” ACS Appl. Mater. Interfaces , vol. 10, no. 23, pp. 20196–20204, Jun. 2018, doi: 10.1021/acsami.8b06413. [7] S. Abdul Hadi, G. Dushaq, and A. Nayfeh, “Effect of atomic layer deposited Al 2 O 3 :ZnO alloys on thin-film silicon photovoltaic devices,” Journal of Applied Physics , vol. 122, no. 24, p. 245103, Dec. 2017, doi: 10.1063/1.4990871. [8] T. Li and G. Galli, “Electronic Properties of MoS 2 Nanoparticles,” J. Phys. Chem. C , vol. 111, no. 44, pp. 16192–16196, Nov. 2007, doi: 10.1021/jp075424v. [9] Z. Lou et al. , “High-performance MoS_2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared,” Opt. Lett. , vol. 42, no. 17, p. 3335, Sep. 2017, doi: 10.1364/OL.42.003335. [10] A. P. Sunitha, P. Praveen, M. K. Jayaraj, and K. J. Saji, “Upconversion and downconversion photoluminescence and optical limiting in colloidal MoS2 nanostructures prepared by ultrasonication,” Optical Materials , vol. 85, pp. 61–70, Nov. 2018, doi: 10.1016/j.optmat.2018.08.038. [11] Y. Wu et al. , “Monolithic integration of MoS 2 -based visible detectors and GaN-based UV detectors,” Photon. Res. , vol. 7, no. 10, p. 1127, Oct. 2019, doi: 10.1364/PRJ.7.001127. Figure 1\",\"PeriodicalId\":11461,\"journal\":{\"name\":\"ECS Meeting Abstracts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Meeting Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/ma2023-01321826mtgabs\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01321826mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

MoS 2是一种很有前途的二维材料,由于其尺寸相关的可调谐带隙和吸引人的磁性、光学和电学性质[3],引起了许多研究领域的兴趣[1],[2]。此外,最近人们对利用MoS 2在太阳能电池中的应用越来越感兴趣,这些应用证明了可测量的器件增强[4]-[6]。因此,人们对了解其太阳能收集的潜力非常感兴趣。在这项研究中,我们展示了一种简单的方法,在铝掺杂氧化锌(AZO)层(透明导电氧化物)上沉积二维MoS 2纳米粒子(NPs)层,并研究了其光谱响应及其在光电系统中的应用潜力。采用1:19比例的热原子层沉积(ALD)在4英寸石英晶圆上生长了80 nm的AZO层薄膜,该薄膜在太阳能电池应用中表现出良好的电学和光学质量[7]。我们通过在AZO/石英晶圆上以1000 rpm旋转镀膜40秒来沉积MoS 2。采用精密移液器,每一步用500 μL的二氧化钼分散7层,使其累积分散体积达到3500 μL。利用紫外-可见-近红外光谱仪(Perkin Elmer Lambda)在250-1200 nm宽波长范围内对制备的样品进行了表征,测量了透射率和反射率,并计算了吸光度。并在旋涂前测量了基材AZO/石英和石英背景信号作为参考。所获得的数据表明,由于MoS 2 NPs在低波长(<400 nm)具有高吸光度效应,在340 nm左右达到峰值,吸光度约为~6.7%。经过进一步的研究,我们注意到这种行为在整个光谱中不是线性的,而是(i)波长和(ii) MoS 2数量的函数,这可能部分是由于多层堆叠的3D MoS 2纳米颗粒的量子限制效应[8]。这一现象可能开启了将这种材料用于低波长滤光片或紫外传感应用的可能性[9]。此外,它还可以潜在地用于高能光子的量子下转换[10],以更低的能量重新发射光子,以提高太阳能电池的效率并减少热负担;然而,还需要进一步的研究。[1]周鹏,陈超,王晓霞,胡斌,三红,“基于二维光导MoS2纳米片的表面声波谐振器的紫外光传感”,光子学报,vol. 31, pp. 389-397, 2018, doi: 10.1016/ j.i ssn .2017.12.007。[2]董宏等,“荧光MoS - 2量子点的超声制备、上转换和下转换生物成像及其光动力治疗”,中国生物医学工程学报。板牙。《接口》,第8卷,第2期。5, pp. 3107-3114, 2016年2月,doi: 10.1021/acsami.5b10459。[3]李志强,李志强,李志强,“一种新型直接间隙半导体材料”,物理学报。启。,第105卷,第105期。13, p. 136805, sept . 2010, doi: 10.1103/ physrevlet .105.136805。[4]刘志强,“石墨烯/硅太阳能电池的光电性能研究”,材料工程,vol. 7, no. 5。34, pp. 14476-14482, 2015, doi: 10.1039/C5NR03046C。[5]张晓明,张晓明,“超薄二硫化钼纳米片在钙钛矿太阳能电池中的应用”,光学材料,vol. 104, p. 109933, Jun. 2020, doi: 10.1016/ j.c optmatt .2020.109933。[6] Y.-J。黄,H.-C。陈,H.-K。林和k - h。Wei,“掺杂ZnO电子传输层与MoS 2纳米片提高聚合物太阳能电池的效率”,ACS applied。板牙。《接口》,第10卷,第2期。23, pp. 20196-20204, 2018年6月,doi: 10.1021/acsami.8b06413。[7]张晓明,张晓明,“Al 2o3:ZnO合金在硅光电器件中的应用”,应用物理学报,vol. 22, no. 7。24, p. 245103, 2017年12月,doi: 10.1063/1.4990871。[8]李涛,李志强,“纳米二氧化钛的电子特性”,物理学报。化学。C,第111卷,第111号。44, pp. 16192-16196, Nov. 2007, doi: 10.1021/jp075424v。[9]刘志强等,“基于高光谱的MoS_2/Si异质结宽带光电探测器”,光电工程学报,2011。,第42卷,第2期。17, p. 3335, Sep. 2017, doi: 10.1364/OL.42.003335。[10]张建军,张建军,张建军,“超声合成纳米二氧化钼的光致发光特性”,光学材料,vol. 85, pp. 61-70, 2018.08.038, doi: 10.1016/ j.p optmatet .2018.08.038。[11]吴勇等,“基于MoS - 2的可见光探测器和基于gan的紫外探测器的集成”,光子学报。参考文献,第七卷,第7号。2019年10月,doi: 10.1364/PRJ.7.001127。图1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced UV Absorption By 2D MoS2 Nanoparticles
MoS 2 is one of the promising 2D materials that caught the interest of many research fields[1], [2] due to their size-dependent tunable bandgap and attractive magnetic, optical, and electrical properties[3]. Furthermore, recently there has been a growing interest in utilizing MoS 2 for solar cell applications that demonstrated measurable device enhancements[4]–[6]. Hence, there is a great interest in understanding its potential for solar energy harvesting. In this study, we show a simple method to deposit a 2D layer of MoS 2 nanoparticles (NPs) on top of Aluminum-doped Zinc oxide (AZO) layer (transparent conductive oxide) and investigate its spectral response and potential for application in optoelectronic systems. A thin film of 80 nm AZO layer was grown on a 4-inch quartz wafer using thermal Atomic Layer Deposition (ALD) with a 1:19 ratio which has shown good electrical and optical qualities for solar cell applications[7]. We deposited the MoS 2 by spin-coating it on the AZO/quartz wafers for 40 sec at 1000 rpm. Incremental coating is carried on by dispersing seven layers with 500 μL of MoS 2 in each step using a precise pipet to a cumulative dispersion volume of 3500 μL. The prepared samples were characterized using a UV-Vis-NIR spectrometer (Perkin Elmer Lambda) across a wide range of wavelengths (250-1200 nm) by measuring both transmittance and reflectance and calculating absorbance. Furthermore, the base AZO/quartz and quartz background signal were measured before spin-coating as reference. The obtained data shows a high absorbance effect due to MoS 2 NPs at low wavelengths (<400 nm), where it peaks around 340 nm with an approximate absorbance of ~6.7%. Upon further examination, we notice that this behavior is not linear across the whole spectrum and instead is a function of (i) wavelength and (ii) MoS 2 quantity which could be partially due to the quantum confinement effect of several layers of stacked 3D MoS 2 nanoparticles[8]. This phenomenon could open the possibility of utilizing this material for low-wavelength filters or UV sensing applications[9]. Also, it can potentially be utilized for quantum down-conversion[10] of high-energy photons to re-emit photons at lower energies in order to enhance solar cells’ efficiencies and reduce thermal burden; however, further investigation is needed. [1] P. Zhou, C. Chen, X. Wang, B. Hu, and H. San, “2-Dimentional photoconductive MoS2 nanosheets using in surface acoustic wave resonators for ultraviolet light sensing,” Sensors and Actuators A: Physical , vol. 271, pp. 389–397, Mar. 2018, doi: 10.1016/j.sna.2017.12.007. [2] H. Dong et al. , “Fluorescent MoS 2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy,” ACS Appl. Mater. Interfaces , vol. 8, no. 5, pp. 3107–3114, Feb. 2016, doi: 10.1021/acsami.5b10459. [3] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS 2 : A New Direct-Gap Semiconductor,” Phys. Rev. Lett. , vol. 105, no. 13, p. 136805, Sep. 2010, doi: 10.1103/PhysRevLett.105.136805. [4] Y. Tsuboi et al. , “Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS 2 thin film,” Nanoscale , vol. 7, no. 34, pp. 14476–14482, 2015, doi: 10.1039/C5NR03046C. [5] N. A. Abd Malek et al. , “Ultra-thin MoS2 nanosheet for electron transport layer of perovskite solar cells,” Optical Materials , vol. 104, p. 109933, Jun. 2020, doi: 10.1016/j.optmat.2020.109933. [6] Y.-J. Huang, H.-C. Chen, H.-K. Lin, and K.-H. Wei, “Doping ZnO Electron Transport Layers with MoS 2 Nanosheets Enhances the Efficiency of Polymer Solar Cells,” ACS Appl. Mater. Interfaces , vol. 10, no. 23, pp. 20196–20204, Jun. 2018, doi: 10.1021/acsami.8b06413. [7] S. Abdul Hadi, G. Dushaq, and A. Nayfeh, “Effect of atomic layer deposited Al 2 O 3 :ZnO alloys on thin-film silicon photovoltaic devices,” Journal of Applied Physics , vol. 122, no. 24, p. 245103, Dec. 2017, doi: 10.1063/1.4990871. [8] T. Li and G. Galli, “Electronic Properties of MoS 2 Nanoparticles,” J. Phys. Chem. C , vol. 111, no. 44, pp. 16192–16196, Nov. 2007, doi: 10.1021/jp075424v. [9] Z. Lou et al. , “High-performance MoS_2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared,” Opt. Lett. , vol. 42, no. 17, p. 3335, Sep. 2017, doi: 10.1364/OL.42.003335. [10] A. P. Sunitha, P. Praveen, M. K. Jayaraj, and K. J. Saji, “Upconversion and downconversion photoluminescence and optical limiting in colloidal MoS2 nanostructures prepared by ultrasonication,” Optical Materials , vol. 85, pp. 61–70, Nov. 2018, doi: 10.1016/j.optmat.2018.08.038. [11] Y. Wu et al. , “Monolithic integration of MoS 2 -based visible detectors and GaN-based UV detectors,” Photon. Res. , vol. 7, no. 10, p. 1127, Oct. 2019, doi: 10.1364/PRJ.7.001127. Figure 1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信