聚苯氧基阴离子交换膜中紫外光控制的硝基交联

Auston L. Clemens, Maira Raquel Ceron, Magi Mettry Yassa, Thomas Ferron, Adam Barnett, Joshua Aaron Hammons, Buddhinie Jayathilake, Valeria Molinero, John Joseph Karnes, James Spencer Oakdale
{"title":"聚苯氧基阴离子交换膜中紫外光控制的硝基交联","authors":"Auston L. Clemens, Maira Raquel Ceron, Magi Mettry Yassa, Thomas Ferron, Adam Barnett, Joshua Aaron Hammons, Buddhinie Jayathilake, Valeria Molinero, John Joseph Karnes, James Spencer Oakdale","doi":"10.1149/ma2023-01402882mtgabs","DOIUrl":null,"url":null,"abstract":"Anion exchange membranes (AEMs) promise significant capital cost saving associated with enabling use of Pt-group-free electrodes and components in alkaline fuel cells and electrolyzer devices. However, AEMs often lack the chemical and mechanical stability required for widespread commercial adoption. Crosslinking has proven to be an effective method to permit increased ion exchange capacity (IEC) while preventing exponential water uptake and retaining both conductivity and mechanical strength. In this work, we leverage molecular dynamics simulations to explore crosslinking methodologies in silico. We present a reproducible and quantitative UV-based nitrene chemistry that utilizes a mobile crosslinker that is straightforward to synthesize and implement. This crosslinking strategy significantly mitigates excess water uptake and improves alkaline stability without sacrificing IEC during the cure process. Additionally, we characterize electrochemically fielded AEMs by small angle X-ray scattering, mechanical strength testing, and other post-mortem analyses. The operational lifetime of crosslinked AEMs prepared in this work is 5 times greater than corresponding untreated AEMs. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 within the LDRD program 21-ERD-013. LLNL-ABS-848147.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UV-Controlled Nitrene Crosslinking in Poly(phenylene oxide) Anion Exchange Membranes\",\"authors\":\"Auston L. Clemens, Maira Raquel Ceron, Magi Mettry Yassa, Thomas Ferron, Adam Barnett, Joshua Aaron Hammons, Buddhinie Jayathilake, Valeria Molinero, John Joseph Karnes, James Spencer Oakdale\",\"doi\":\"10.1149/ma2023-01402882mtgabs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anion exchange membranes (AEMs) promise significant capital cost saving associated with enabling use of Pt-group-free electrodes and components in alkaline fuel cells and electrolyzer devices. However, AEMs often lack the chemical and mechanical stability required for widespread commercial adoption. Crosslinking has proven to be an effective method to permit increased ion exchange capacity (IEC) while preventing exponential water uptake and retaining both conductivity and mechanical strength. In this work, we leverage molecular dynamics simulations to explore crosslinking methodologies in silico. We present a reproducible and quantitative UV-based nitrene chemistry that utilizes a mobile crosslinker that is straightforward to synthesize and implement. This crosslinking strategy significantly mitigates excess water uptake and improves alkaline stability without sacrificing IEC during the cure process. Additionally, we characterize electrochemically fielded AEMs by small angle X-ray scattering, mechanical strength testing, and other post-mortem analyses. The operational lifetime of crosslinked AEMs prepared in this work is 5 times greater than corresponding untreated AEMs. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 within the LDRD program 21-ERD-013. LLNL-ABS-848147.\",\"PeriodicalId\":11461,\"journal\":{\"name\":\"ECS Meeting Abstracts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Meeting Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/ma2023-01402882mtgabs\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01402882mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阴离子交换膜(AEMs)有望在碱性燃料电池和电解槽设备中使用无pt基团电极和组件,从而显著节省资本成本。然而,AEMs通常缺乏广泛商业应用所需的化学和机械稳定性。交联已被证明是一种有效的方法,可以增加离子交换容量(IEC),同时防止指数吸水,并保持电导率和机械强度。在这项工作中,我们利用分子动力学模拟来探索硅交联方法。我们提出了一种可重复的、定量的基于紫外线的亚硝基化学,它利用了一种易于合成和实现的可移动交联剂。这种交联策略显著减轻了过量的水分吸收,提高了碱性稳定性,而不会在固化过程中牺牲IEC。此外,我们通过小角度x射线散射、机械强度测试和其他尸检分析来表征电化学场AEMs。本工作制备的交联AEMs的使用寿命比相应的未经处理的AEMs长5倍。这项工作是在美国能源部的支持下由劳伦斯利弗莫尔国家实验室根据合同DE-AC52-07NA27344在LDRD计划21-ERD-013中进行的。llnl - abs - 848147。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UV-Controlled Nitrene Crosslinking in Poly(phenylene oxide) Anion Exchange Membranes
Anion exchange membranes (AEMs) promise significant capital cost saving associated with enabling use of Pt-group-free electrodes and components in alkaline fuel cells and electrolyzer devices. However, AEMs often lack the chemical and mechanical stability required for widespread commercial adoption. Crosslinking has proven to be an effective method to permit increased ion exchange capacity (IEC) while preventing exponential water uptake and retaining both conductivity and mechanical strength. In this work, we leverage molecular dynamics simulations to explore crosslinking methodologies in silico. We present a reproducible and quantitative UV-based nitrene chemistry that utilizes a mobile crosslinker that is straightforward to synthesize and implement. This crosslinking strategy significantly mitigates excess water uptake and improves alkaline stability without sacrificing IEC during the cure process. Additionally, we characterize electrochemically fielded AEMs by small angle X-ray scattering, mechanical strength testing, and other post-mortem analyses. The operational lifetime of crosslinked AEMs prepared in this work is 5 times greater than corresponding untreated AEMs. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 within the LDRD program 21-ERD-013. LLNL-ABS-848147.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信